Álvaro-Fuentes, J., Easter, M., Paustian, K., 2012a. Climate change effects on organic carbon storage in agricultural soils of northeastern Spain. Agric. Ecosyst. Environ. 155, 87–94. https://doi.org/10.1016/j.agee.2012.04.001
Álvaro-Fuentes, J., Morell, F.J., Plaza-Bonilla, D., Arrúe, J.L., Cantero-Martínez, C., 2012b. Modelling tillage and nitrogen fertilization effects on soil organic carbon dynamics. Soil Tillage Res. 120, 32–39. https://doi.org/10.1016/j.still.2012.01.009
Arrouays, D., Lagacherie, P., Hartemink, A.E., 2017. Digital soil mapping across the globe. Geoderma Reg. 9, 1–4. https://doi.org/https://doi.org/10.1016/j.geodrs.2017.03.002
Ballabio, C., Panagos, P., Montanarella, L., 2014. Predicting soil organic carbon content in Cyprus using remote sensing and Earth observation data, in: Proceedings of SPIE - The International Society for Optical Engineering. European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via E. Fermi 2749, I-21027 Ispra (VA), Italy. https://doi.org/10.1117/12.2066406
Barbera, V., Poma, I., Gristina, L., Novara, A., Egli, M., Egli, S., 2012. Long-term cropping systems and tillage management effects on soil organic carbon stock and steady state level of C sequestration rates in a semiarid environment. L. Degrad. Dev. 23, 82–91. https://doi.org/10.1002/ldr.1055
Batjes, N.H., Ribeiro, E., van Oostrum, A., Leenaars, J., Hengl, T., Mendes de Jesus, J., 2017. WoSIS: providing standardised soil profile data for the world. Earth Syst. Sci. Data 9, 1–14. https://doi.org/10.5194/essd-9-1-2017
Bellamy, P.H., Loveland, P.J., Bradley, R.I., Lark, R.M., Kirk, G.J.D., 2005. Carbon losses from all soils across England and Wales 1978-2003. Nature 437, 245–248. https://doi.org/10.1038/nature04038
Bisutti, I., Hilke, I., Raessler, M., 2004. Determination of total organic carbon – an overview of current methods. TrAC Trends Anal. Chem. 23, 716–726. https://doi.org/10.1016/j.trac.2004.09.003
Biswas, A., Zhang, Y., 2018. Sampling Designs for Validating Digital Soil Maps: A Review. Pedosph. An Int. J. 28, 1–15. https://doi.org/10.1016/S1002-0160(18)60001-3
Boubehziz, S., Khanchoul, K., Benslama, M., Benslama, A., Marchetti, A., Francaviglia, R., Piccini, C., 2020. Predictive mapping of soil organic carbon in Northeast Algeria. Catena 190, 104539. https://doi.org/10.1016/j.catena.2020.104539
Brus, D.J., 2019. Sampling for digital soil mapping: A tutorial supported by R scripts. Geoderma 338, 464–480. https://doi.org/10.1016/j.geoderma.2018.07.036
Chen, S., Angers, D.A., Martin, M.P., Walter, C., 2019. Soil carbon stocks under different land uses and the applicability of the soil carbon saturation concept. Soil Tillage Res. 188, 53–58. https://doi.org/10.1016/J.STILL.2018.11.001
Chenu, C., Angers, D.A., Barré, P., Derrien, D., Balesdent, J., 2019. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil Tillage Res. 188, 41–52. https://doi.org/10.1016/J.STILL.2018.04.011
Ciliberti, S., Frascarelli, A., 2015. A critical assessment of the implementation of CAP 2014- 2020 direct payments in Italy. Bio-based Appl. Econ. 4, 261–277. https://doi.org/10.13128/BAE-16377
Confalonieri, R., Perego, A., Chiodini, M.E., Scaglia, B., Rosenmund, A.S., Acutis, M., 2009. Analysis of sample size for variables related to plant, soil, and soil microbial respiration in a paddy rice field. F. Crop. Res. 113, 125–130. https://doi.org/10.1016/j.fcr.2009.04.014
Costantini, E.A.C., Lorenzetti, R., Malorgio, G., 2016. A multivariate approach for the study of environmental drivers of wine economic structure. Land use policy 57, 53–63. https://doi.org/10.1016/j.landusepol.2016.05.015
Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. https://doi.org/10.1038/nature04514
Deng, X., Chen, X., Ma, W., Ren, Z., Zhang, M., Grieneisen, M.L., Long, W., Ni, Z., Zhan, Y., Lv, X., 2018. Baseline map of organic carbon stock in farmland topsoil in East China. Agric. Ecosyst. Environ. 254, 213–223. https://doi.org/10.1016/J.AGEE.2017.11.022
European Comission, 2017. Cap context indicators 2014-2020., available at: https://ec.europa.eu/info/files/context-indicator-fiches_en.
Faul, F., Erdfelder, E., Lang, A.-G., Buchner, A., 2007. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191. https://doi.org/10.3758/BF03193146
Francaviglia, R., Coleman, K., Whitmore, A.P., Doro, L., Urracci, G., Rubino, M., Ledda, L., 2012. Changes in soil organic carbon and climate change - Application of the RothC model in agro-silvo-pastoral Mediterranean systems. Agric. Syst. 112, 48–54. https://doi.org/10.1016/j.agsy.2012.07.001
Freibauer, A., Rounsevell, M.D.., Smith, P., Verhagen, J., 2004. Carbon sequestration in the agricultural soils of Europe. Geoderma 122, 1–23. https://doi.org/10.1016/j.geoderma.2004.01.021
Gessesse, T.A., Khamzina, A., 2018. How reliable is the Walkley-Black method for analyzing carbon-poor, semi-arid soils in Ethiopia? J. Arid Environ. 153, 98–101. https://doi.org/10.1016/J.JARIDENV.2018.01.008
Giannetta, B., Plaza, C., Vischetti, C., Cotrufo, M.F., Zaccone, C., 2018. Distribution and thermal stability of physically and chemically protected organic matter fractions in soils across different ecosystems. Biol. Fertil. Soils 54, 671–681. https://doi.org/10.1007/s00374-018-1290-9
Goidts, E., van Wesemael, B., 2007. Regional assessment of soil organic carbon changes under agriculture in Southern Belgium (1955–2005). Geoderma 141, 341–354. https://doi.org/10.1016/j.geoderma.2007.06.013
Gristina, L., Keesstra, S., Novara, A., 2018. No-till durum wheat yield success probability in semi arid climate: A methodological framework. Soil Tillage Res. 181, 29–36. https://doi.org/10.1016/J.STILL.2018.04.002
Grunwald, S., Yu, C., Xiong, X., 2018. Transferability and Scalability of Soil Total Carbon Prediction Models in Florida, USA. Pedosphere 28, 856–872. https://doi.org/10.1016/S1002-0160(18)60048-7
Gubler, A., Wächter, D., Schwab, P., Müller, M., Keller, A., 2019. Twenty-five years of observations of soil organic carbon in Swiss croplands showing stability overall but with some divergent trends. Environ. Monit. Assess. 191. https://doi.org/10.1007/s10661-019-7435-y
Guo, L.B., Gifford, R.M., 2002. Soil carbon stocks and land use change: A meta analysis. Glob. Chang. Biol. 8, 345–360. https://doi.org/10.1046/j.1354-1013.2002.00486.x
Hengl, T., De Jesus, J.M., MacMillan, R.A., Batjes, N.H., Heuvelink, G.B.M., Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars, J.G.B., Walsh, M.G., Gonzalez, M.R., 2014. SoilGrids1km - Global soil information based on automated mapping. PLoS One 9. https://doi.org/10.1371/journal.pone.0105992
Hobley, E.U., Wilson, B., 2016. The depth distribution of organic carbon in the soils of eastern Australia. Ecosphere 7, e01214. https://doi.org/10.1002/ecs2.1214
Hsu, H., Lachenbruch, P.A., 2014. Paired t-Test, in: Wiley StatsRef: Statistics Reference Online. John Wiley & Sons, Ltd, Chichester, UK. https://doi.org/10.1002/9781118445112.stat05929
Huang, J., Minasny, B., McBratney, A.B., Padarian, J., Triantafilis, J., 2018. The location- and scale- specific correlation between temperature and soil carbon sequestration across the globe. Sci. Total Environ. 615, 540–548. https://doi.org/10.1016/j.scitotenv.2017.09.136
Istat, 2013. 6° censimento generale dell’agricoltura in Sicilia. https://doi.org/https://www4.istat.it/it/files/2012/12/6%C2%B0_censimento_agricoltura_in_Sicilia_Risultati_definitivi.pdf?title=Censimento+dell%E2%80%99Agricoltura+in+Sicilia+-+05%2Fdic%2F2012+-+Testo+integrale.pdf
Kämpf, I., Hölzel, N., Störrle, M., Broll, G., Kiehl, K., 2016. Potential of temperate agricultural soils for carbon sequestration: A meta-analysis of land-use effects. Sci. Total Environ. 566, 428–435. https://doi.org/10.1016/j.scitotenv.2016.05.067
Knicker, H., 2007. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85, 91–118. https://doi.org/10.1007/s10533-007-9104-4
Köhl, M., Lister, A., Scott, C.T., Baldauf, T., Plugge, D., 2011. Implications of sampling design and sample size for national carbon accounting systems. Carbon Balance Manag. 6, 10. https://doi.org/10.1186/1750-0680-6-10
Krishnamoorthy, K., Lu, F., Mathew, T., 2007. A parametric bootstrap approach for ANOVA with unequal variances: Fixed and random models. Comput. Stat. Data Anal. 51, 5731–5742. https://doi.org/10.1016/j.csda.2006.09.039
Krol, B.G.C.M., 2008. Towards a Data Quality Management Framework for Digital Soil Mapping with Limited Data BT - Digital Soil Mapping with Limited Data, in: Hartemink, A.E., McBratney, A., Mendonça-Santos, M. de L. (Eds.), . Springer Netherlands, Dordrecht, pp. 137–149. https://doi.org/10.1007/978-1-4020-8592-5_11
Kühnel, A., Garcia-Franco, N., Wiesmeier, M., Burmeister, J., Hobley, E., Kiese, R., Dannenmann, M., Kögel-Knabner, I., 2019. Controlling factors of carbon dynamics in grassland soils of Bavaria between 1989 and 2016. Agric. Ecosyst. Environ. 280, 118–128. https://doi.org/10.1016/j.agee.2019.04.036
Lacoste, M., Minasny, B., McBratney, A., Michot, D., Viaud, V., Walter, C., 2014. High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape. Geoderma 213, 296–311. https://doi.org/10.1016/j.geoderma.2013.07.002
Lakens, D., 2013. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front. Psychol. 4, 863. https://doi.org/10.3389/fpsyg.2013.00863
Lal, R., 2008. Carbon sequestration. Philos. Trans. R. Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2007.2185
Lark, R.M., 2009. Estimating the regional mean status and change of soil properties: Two distinct objectives for soil survey. Eur. J. Soil Sci. 60, 748–756. https://doi.org/10.1111/j.1365-2389.2009.01156.x
Lizaga, I., Gaspar, L., Quijano, L., Dercon, G., Navas, A., 2019. NDVI, 137Cs and nutrients for tracking soil and vegetation development on glacial landforms in the Lake Parón Catchment (Cordillera Blanca, Perú). Sci. Total Environ. 651, 250–260. https://doi.org/10.1016/j.scitotenv.2018.09.075
Long, J., Liu, Y., Xing, S., Qiu, L., Huang, Q., Zhou, B., Shen, J., Zhang, L., 2018. Effects of sampling density on interpolation accuracy for farmland soil organic matter concentration in a large region of complex topography. Ecol. Indic. 93, 562–571. https://doi.org/10.1016/J.ECOLIND.2018.05.044
López-Bellido, R.J., Fontán, J.M., López-Bellido, F.J., López-Bellido, L., 2010. Carbon Sequestration by Tillage, Rotation, and Nitrogen Fertilization in a Mediterranean Vertisol. Agron. J. 102, 310. https://doi.org/10.2134/agronj2009.0165
Lou, Y., Xu, M., Wang, W., Sun, X., Zhao, K., 2011. Return rate of straw residue affects soil organic C sequestration by chemical fertilization. Soil Tillage Res. 113, 70–73. https://doi.org/10.1016/j.still.2011.01.007
Lugato, E., Panagos, P., Bampa, F., Jones, A., Montanarella, L., 2014. A new baseline of organic carbon stock in European agricultural soils using a modelling approach. Glob. Chang. Biol. 20, 313–326. https://doi.org/10.1111/gcb.12292
Mazzoncini, M., Sapkota, T.B., Bàrberi, P., Antichi, D., Risaliti, R., Bahadur, T., Ba, P., 2011. Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content. Soil Tillage Res. 114, 165–174. https://doi.org/10.1016/j.still.2011.05.001
McBratney, A., Field, D.J., Koch, A., 2014. The dimensions of soil security. Geoderma 213, 203–213. https://doi.org/10.1016/J.GEODERMA.2013.08.013
Minasny, B., Malone, B.P., McBratney, A.B., Angers, D.A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B.S., Field, D.J., Gimona, A., Hedley, C.B., Hong, S.Y., Mandal, B., Marchant, B.P., Martin, M., McConkey, B.G., Mulder, V.L., O’Rourke, S., Richer-de-Forges, A.C., Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I., Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., Vågen, T.-G., van Wesemael, B., Winowiecki, L., 2017. Soil carbon 4 per mille. Geoderma 292, 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002
Minasny, B., McBratney, A.B., 2016. Digital soil mapping: A brief history and some lessons. Geoderma 264, 301–311. https://doi.org/10.1016/j.geoderma.2015.07.017
Minasny, B., McBratney, A.B., Malone, B.P., Wheeler, I., 2013. Chapter One – Digital Mapping of Soil Carbon, in: Advances in Agronomy. pp. 1–47. https://doi.org/10.1016/B978-0-12-405942-9.00001-3
Navas, A., Quine, T.A., Walling, D.E., Gaspar, L., Quijano, L., Lizaga, I., 2017. Relating Intensity of Soil Redistribution to Land Use Changes in Abandoned Pyrenean Fields Using Fallout Caesium-137. L. Degrad. Dev. 28, 2017–2029. https://doi.org/10.1002/ldr.2724
Novara, A., Gristina, L., Sala, G., Galati, A., Crescimanno, M., Cerdà, A., Badalamenti, E., La Mantia, T., 2017. Agricultural land abandonment in Mediterranean environment provides ecosystem services via soil carbon sequestration. Sci. Total Environ. 576, 420–429. https://doi.org/10.1016/j.scitotenv.2016.10.123
Odeh, I.O.A., Leenaars, J., Hartemink, A., 2012. The challenges of collating legacy data for digital mapping of Nigerian soils. Digit. Soil Assessments Beyond 453–458. https://doi.org/10.1201/b12728-88
Panagos, P., Borrelli, P., Meusburger, K., Alewell, C., Lugato, E., Montanarella, L., 2015. Estimating the soil erosion cover-management factor at the European scale. Land use policy 48, 38–50. https://doi.org/10.1016/j.landusepol.2015.05.021
Parras-Alcántara, L., Lozano-García, B., Brevik, E.C., Cerdá, A., 2015. Soil organic carbon stocks assessment in Mediterranean natural areas: A comparison of entire soil profiles and soil control sections. J. Environ. Manage. 155, 219–228. https://doi.org/10.1016/j.jenvman.2015.03.039
Pezzuolo, A., Dumont, B., Sartori, L., Marinello, F., De Antoni Migliorati, M., Basso, B., 2017. Evaluating the impact of soil conservation measures on soil organic carbon at the farm scale. Comput. Electron. Agric. 135, 175–182. https://doi.org/10.1016/j.compag.2017.02.004
Plaza, C., Zaccone, C., Sawicka, K., Méndez, A.M., Tarquis, A., Gascó, G., Heuvelink, G.B.M., Schuur, E.A.G., Maestre, F.T., 2018. Soil resources and element stocks in drylands to face global issues. Sci. Rep. 8, 13788. https://doi.org/10.1038/s41598-018-32229-0
Rivas-Martínez, S., Rivas-Sáenz, S., Penas-Merino, A., 2011. Worldwide bioclimatic classification system. Glob. Geobot. 1, 1–638. https://doi.org/10.5616/gg110001
Rodríguez Martín, J.A., Álvaro-Fuentes, J., Gabriel, J.L., Gutiérrez, C., Nanos, N., Escuer, M., Ramos-Miras, J.J., Gil, C., Martín-Lammerding, D., Boluda, R., 2019. Soil organic carbon stock on the Majorca Island: Temporal change in agricultural soil over the last 10 years. CATENA 181, 104087. https://doi.org/10.1016/J.CATENA.2019.104087
Rodríguez Martín, J.A., Álvaro-Fuentes, J., Gonzalo, J., Gil, C., Ramos-Miras, J.J., Grau Corbí, J.M., Boluda, R., 2016. Assessment of the soil organic carbon stock in Spain. Geoderma 264, 117–125. https://doi.org/10.1016/j.geoderma.2015.10.010
Saby, N.P.A., Bellamy, P.H., Morvan, X., Arrouays, D., Jones, R.J.A., Verheijen, F.G.A., Kibblewhite, M.G., Verdoodt, A., Üveges, J.B., Freudenschuß, A., Simota, C., 2008. Will European soil-monitoring networks be able to detect changes in topsoil organic carbon content? Glob. Chang. Biol. 14, 2432–2442. https://doi.org/10.1111/j.1365-2486.2008.01658.x
Schillaci, C., Acutis, M., Lombardo, L., Lipani, A., Fantappiè, M., Märker, M., Saia, S., 2017. Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling. Sci. Total Environ. 601–602, 821–832. https://doi.org/10.1016/j.scitotenv.2017.05.239
Schillaci, C., Acutis, M., Vesely, F., Saia, S., 2019. A simple pipeline for the assessment of legacy soil datasets: An example and test with soil organic carbon from a highly variable area. Catena 175, 110–122. https://doi.org/10.1016/j.catena.2018.12.015
Schmidt, K., Behrens, T., Scholten, T., 2008. Instance selection and classification tree analysis for large spatial datasets in digital soil mapping. Geoderma 146, 138–146. https://doi.org/https://doi.org/10.1016/j.geoderma.2008.05.010
Shi, Z., Crowell, S., Luo, Y., Moore, B., 2018. Model structures amplify uncertainty in predicted soil carbon responses to climate change. Nat. Commun. 9, 2171. https://doi.org/10.1038/s41467-018-04526-9
Shiwen, Z., Lanlan, Z., Zishuang, L., Qingyun, W., Hongbiao, C., Zhongxiang, S., Chang, G., Huiling, L., Yuanfang, H., 2017. Three-dimensional stochastic simulations of soil clay and its response to sampling density. Comput. Electron. Agric. 142, 273–282. https://doi.org/10.1016/J.COMPAG.2017.08.031
Smith, J., Smith, P., Wattenbach, M., Zaehle, S., Hiederer, R., Jones, R.J. a, Montanarella, L., Rounsevell, M.D. a, Reginster, I., Ewert, F., 2005. Projected changes in mineral soil carbon of European croplands and grasslands, 1990-2080. Glob. Chang. Biol. 11, 2141–2152. https://doi.org/10.1111/j.1365-2486.2005.001075.x
Smith, P., 2004. Carbon sequestration in croplands: the potential in Europe and the global context. Eur. J. Agron. 20, 229–236. https://doi.org/10.1016/J.EJA.2003.08.002
Smith, P., Soussana, J., Angers, D., Schipper, L., Chenu, C., Rasse, D.P., Batjes, N.H., van Egmond, F., McNeill, S., Kuhnert, M., Arias‐Navarro, C., Olesen, J.E., Chirinda, N., Fornara, D., Wollenberg, E., Álvaro‐Fuentes, J., Sanz‐Cobena, A., Klumpp, K., 2019. How to measure, report and verify soil carbon change to realise the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Chang. Biol. gcb.14815. https://doi.org/10.1111/gcb.14815
Sommer, R., Bossio, D., 2014. Dynamics and climate change mitigation potential of soil organic carbon sequestration. J. Environ. Manage. 144, 83–87. https://doi.org/10.1016/J.JENVMAN.2014.05.017
Sperow, M., 2020. What might it cost to increase soil organic carbon using no-till on U.S. cropland? Carbon Balance Manag. 15, 26. https://doi.org/10.1186/s13021-020-00162-3
Szatmári, G., László, P., Takács, K., Szabó, J., Bakacsi, Z., Koós, S., Pásztor, L., 2018. Optimization of second-phase sampling for multivariate soil mapping purposes: Case study from a wine region, Hungary. Geoderma. https://doi.org/10.1016/J.GEODERMA.2018.02.030
Vermeulen, S., Bossio, D., Lehmann, J., Luu, P., Paustian, K., Webb, C., Augé, F., Bacudo, I., Baedeker, T., Havemann, T., Jones, C., King, R., Reddy, M., Sunga, I., Von Unger, M., Warnken, M., 2019. A global agenda for collective action on soil carbon. Nat. Sustain. 2, 2–4. https://doi.org/10.1038/s41893-018-0212-z
Veronesi, F., Schillaci, C., 2019. Comparison between geostatistical and machine learning models as predictors of topsoil organic carbon with a focus on local uncertainty estimation. Ecol. Indic. 101, 1032–1044. https://doi.org/10.1016/J.ECOLIND.2019.02.026
Viola, F., Liuzzo, L., Noto, L. V., Lo Conti, F., La Loggia, G., 2014. Spatial distribution of temperature trends in Sicily. Int. J. Climatol. 34, 1–17. https://doi.org/10.1002/joc.3657
Wadoux, A.M.J.-C., Brus, D.J., 2020. How to compare sampling designs for mapping? Eur. J. Soil Sci. https://doi.org/10.1111/ejss.12962
Walkley, A., 1935. An Examination of Methods for Determining Organic Carbon and Nitrogen in Soils. J. Agric. Sci. 25, 598–609. https://doi.org/10.1017/S0021859600019687
WALKLEY, A., BLACK, I., 1934. AN EXAMINATION OF THE DEGTJAREFF METHOD FOR DETERMINING SOIL ORGANIC MATTER, AND A PROPOSED MODIFICATION OF THE CHROMIC ACID TITRATION METHOD. Soil Sci. 37, 29–38. https://doi.org/10.1097/00010694-193401000-00003
Wang, X., Yu, D., Wang, C., Pan, Y., Pan, J., Shi, X., 2018. Variations in cropland soil organic carbon fractions in the black soil region of China. Soil Tillage Res. 184, 93–99. https://doi.org/10.1016/J.STILL.2018.07.010
Wang, Y., Wang, S., Adhikari, K., Wang, Q., Sui, Y., Xin, G., 2019. Effect of cultivation history on soil organic carbon status of arable land in northeastern China. Geoderma 342, 55–64. https://doi.org/10.1016/j.geoderma.2019.02.007
Wei, X., Shao, M., Gale, W., Li, L., 2014. Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Sci. Rep. 4, 4062. https://doi.org/10.1038/srep04062
West, T.O., Post, W.M., 2002. Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation. Soil Sci. Soc. Am. J. 66, 1930. https://doi.org/10.2136/sssaj2002.1930
Wilcoxon, F., 1945. Individual Comparisons by Ranking Methods. Biometrics Bull. 1, 80. https://doi.org/10.2307/3001968
Williams, J.N., Morandé, J.A., Vaghti, M.G., Medellín-Azuara, J., Viers, J.H., 2020. Ecosystem services in vineyard landscapes: a focus on aboveground carbon storage and accumulation. Carbon Balance Manag. 15, 23. https://doi.org/10.1186/s13021-020-00158-z
Zar, J.H., 1999. Biostatistical analysis. Prentice Hall.
Zhang, C., McGrath, D., 2004. Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods. Geoderma 119, 261–275. https://doi.org/10.1016/j.geoderma.2003.08.004
Zhi, J., Jing, C., Lin, S., Zhang, C., Liu, Q., DeGloria, S.D., Wu, J., 2014. Estimating Soil Organic Carbon Stocks and Spatial Patterns with Statistical and GIS-Based Methods. PLoS One 9, e97757. https://doi.org/10.1371/journal.pone.0097757
Zhou, Z., Zhang, X., Gan, Z., 2015. Changes in soil organic carbon and nitrogen after 26 years of farmland management on the Loess Plateau of China. J. Arid Land 7, 806–813. https://doi.org/10.1007/s40333-015-0051-y
Zomer, R.J., Bossio, D.A., Sommer, R., Verchot, L. V, 2017. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Sci. Rep. 7. https://doi.org/10.1038/s41598-017-15794-8