Alfaro, J. A., Ignatchenko, A., Ignatchenko, V., Sinha, A., Boutros, P. C., and Kislinger, T. (2017). Detecting protein variants by mass spectrometry: a comprehensive study in cancer cell-lines. Genome Med 9, 62.
Auersperg, N. J. F. B. (2013). The origin of ovarian cancers—hypotheses and controversies. 5, 709-719.
Bachert, S. E., McDowell, A., Piecoro, D., and Baldwin Branch, L. J. D. (2020). Serous Tubal Intraepithelial Carcinoma: A Concise Review for the Practicing Pathologist and Clinician. 10, 102.
Bartlett, T. E., Chindera, K., McDermott, J., Breeze, C. E., Cooke, W. R., Jones, A., Reisel, D., Karegodar, S. T., Arora, R., and Beck, S. J. N. c. (2016). Epigenetic reprogramming of fallopian tube fimbriae in BRCA mutation carriers defines early ovarian cancer evolution. 7, 1-10.
Bayarkhangai, B., Noureldin, S., Yu, L., Zhao, N., Gu, Y., Xu, H., and Guo, C. J. C. m. (2018). A comprehensive and perspective view of oncoprotein SET in cancer. 7, 3084-3094.
Bonnet, A., Lagarrigue, S., Liaubet, L., Robert-Granie, C., Sancristobal, M., and Tosser-Klopp, G. (2009). Pathway results from the chicken data set using GOTM, Pathway Studio and Ingenuity softwares. BMC Proc 3 Suppl 4, S11.
Bowtell, D. D. N. R. C. (2010). The genesis and evolution of high-grade serous ovarian cancer. 10, 803-808.
Braicu, E., Sehouli, J., Richter, R., Pietzner, K., Denkert, C., and Fotopoulou, C. J. B. j. o. c. (2011). Role of histological type on surgical outcome and survival following radical primary tumour debulking of epithelial ovarian, fallopian tube and peritoneal cancers. 105, 1818-1824.
Brunet, M. A., Brunelle, M., Lucier, J. F., Delcourt, V., Levesque, M., Grenier, F., Samandi, S., Leblanc, S., Aguilar, J. D., Dufour, P., et al. (2019). OpenProt: a more comprehensive guide to explore eukaryotic coding potential and proteomes. Nucleic acids research 47, D403-D410.
Cardon, T., Herve, F., Delcourt, V., Roucou, X., Salzet, M., Franck, J., and Fournier, I. (2020). Optimized Sample Preparation Workflow for Improved Identification of Ghost Proteins. Anal Chem 92, 1122-1129.
Cardon, T., Salzet, M., Franck, J., and Fournier, I. (2019). Nuclei of HeLa cells interactomes unravel a network of ghost proteins involved in proteins translation. Biochim Biophys Acta Gen Subj 1863, 1458-1470.
Carlson, J. W., Jarboe, E. A., Kindelberger, D., Nucci, M. R., Hirsch, M. S., and Crum, C. P. J. I. j. o. g. p. (2010). Serous tubal intraepithelial carcinoma: diagnostic reproducibility and its implications. 29, 310-314.
Chen, W., Liu, G., Jin, M., Ju, P., Xu, J., Zhang, Y., and Zhang, H. J. I. J. C. E. M. (2016). Drebrin is a potential diagnostic biomarker for breast cancer. 9, 23598-23604.
Cornelison, R., Dobbin, Z. C., Katre, A. A., Jeong, D. H., Zhang, Y., Chen, D., Petrova, Y., Llaneza, D. C., Steg, A. D., and Parsons, L. (2017). Targeting RNA-polymerase I in both chemosensitive and chemoresistant populations in epithelial ovarian cancer. Clinical Cancer Research 23, 6529-6540.
Cox, J., Hein, M. Y., Luber, C. A., Paron, I., Nagaraj, N., and Mann, M. (2014). Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Molecular & cellular proteomics : MCP 13, 2513-2526.
Cox, J., and Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26, 1367-1372.
Creekmore, A. L., Silkworth, W. T., Cimini, D., Jensen, R. V., Roberts, P. C., and Schmelz, E. M. J. P. o. (2011). Changes in gene expression and cellular architecture in an ovarian cancer progression model. 6.
Crum, C. P., Drapkin, R., Kindelberger, D., Medeiros, F., Miron, A., Lee, Y. J. C. m., and research (2007). Lessons from BRCA: the tubal fimbria emerges as an origin for pelvic serous cancer. 5, 35-44.
Delcourt, V., Brunelle, M., Roy, A. V., Jacques, J. F., Salzet, M., Fournier, I., and Roucou, X. (2018). The protein coded by a short open reading frame, not by the annotated coding sequence is the main gene product of the dual-coding gene MIEF1. Molecular & cellular proteomics : MCP.
Delcourt, V., Franck, J., Leblanc, E., Narducci, F., Robin, Y. M., Gimeno, J. P., Quanico, J., Wisztorski, M., Kobeissy, F., Jacques, J. F., et al. (2017). Combined Mass Spectrometry Imaging and Top-down Microproteomics Reveals Evidence of a Hidden Proteome in Ovarian Cancer. EBioMedicine 21, 55-64.
Dopazo, J., and Erten, C. (2017). Graph-theoretical comparison of normal and tumor networks in identifying BRCA genes. BMC Syst Biol 11, 110.
El Hassouni, B., Granchi, C., Vallés-Martí, A., Supadmanaba, I. G. P., Bononi, G., Tuccinardi, T., Funel, N., Jimenez, C. R., Peters, G. J., and Giovannetti, E. (2020). The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: interplay with the complex tumor microenvironment and novel therapeutic strategies. Paper presented at: Seminars in Cancer Biology (Elsevier).
Flores, M. A., and Lazar, I. M. J. B. (2020). XMAn v2—a database of Homo sapiens mutated peptides. 36, 1311-1313.
Folkins, A. K., Jarboe, E. A., Roh, M. H., and Crum, C. P. J. G. o. (2009). Precursors to pelvic serous carcinoma and their clinical implications. 113, 391-396.
Francavilla, C., Lupia, M., Tsafou, K., Villa, A., Kowalczyk, K., Jersie-Christensen, R. R., Bertalot, G., Confalonieri, S., Brunak, S., and Jensen, L. J. J. C. r. (2017). Phosphoproteomics of primary cells reveals druggable kinase signatures in ovarian cancer. 18, 3242-3256.
Gan, C., Chenoy, R., Chandrasekaran, D., Brockbank, E., Hollingworth, A., Vimplis, S., Lawrence, A. C., Jeyarajah, A. R., Oram, D., Deo, N. J. A. j. o. o., and gynecology (2017). Persistence of fimbrial tissue on the ovarian surface after salpingectomy. 217, 425. e421-425. e416.
Gnad, F., Baucom, A., Mukhyala, K., Manning, G., and Zhang, Z. (2013). Assessment of computational methods for predicting the effects of missense mutations in human cancers. BMC Genomics 14 Suppl 3, S7.
Hardman, W. E., Primerano, D. A., Legenza, M. T., Morgan, J., Fan, J., and Denvir, J. J. D. i. b. (2019). mRNA expression data in breast cancers before and after consumption of walnut by women. 25, 104050.
Kahlert, C., Weber, H., Mogler, C., Bergmann, F., Schirmacher, P., Kenngott, H., Matterne, U., Mollberg, N., Rahbari, N., and Hinz, U. J. B. j. o. c. (2009). Increased expression of ALCAM/CD166 in pancreatic cancer is an independent prognostic marker for poor survival and early tumour relapse. 101, 457-464.
Kai, F., Fawcett, J. P., and Duncan, R. J. O. (2015). Synaptopodin-2 induces assembly of peripheral actin bundles and immature focal adhesions to promote lamellipodia formation and prostate cancer cell migration. 6, 11162.
Kalra, R. S., and Bapat, S. A. J. P. o. (2013). Expression proteomics predicts loss of RXR-γ during progression of epithelial ovarian cancer. 8.
Karagkouni, D., Paraskevopoulou, M. D., Tastsoglou, S., Skoufos, G., Karavangeli, A., Pierros, V., Zacharopoulou, E., and Hatzigeorgiou, A. G. J. N. a. r. (2020). DIANA-LncBase v3: indexing experimentally supported miRNA targets on non-coding transcripts. 48, D101-D110.
Kindelberger, D. W., Lee, Y., Miron, A., Hirsch, M. S., Feltmate, C., Medeiros, F., Callahan, M. J., Garner, E. O., Gordon, R. W., and Birch, C. J. T. A. j. o. s. p. (2007). Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: evidence for a causal relationship. 31, 161-169.
Kobayashi, H., Iwai, K., Niiro, E., Morioka, S., Yamada, Y., Ogawa, K., and Kawahara, N. J. B. r. (2017). The conceptual advances of carcinogenic sequence model in high‑grade serous ovarian cancer. 7, 209-213.
Koch, J., Foekens, J., Timmermans, M., Fink, W., Wirzbach, A., Kramer, M. D., and Schaefer, B. M. J. A. o. d. r. (2003). Human VAT-1: a calcium-regulated activation marker of human epithelial cells. 295, 203-210.
Kuhn, E., Kurman, R. J., Vang, R., Sehdev, A. S., Han, G., Soslow, R., Wang, T. L., and Shih, I. M. (2012). TP53 mutations in serous tubal intraepithelial carcinoma and concurrent pelvic high‐grade serous carcinoma—evidence supporting the clonal relationship of the two lesions. The Journal of pathology 226, 421-426.
Kuhn, E., Meeker, A., Wang, T.-L., Sehdev, A. S., Kurman, R. J., and Shih, I.-M. J. T. A. j. o. s. p. (2010). Shortened telomeres in serous tubal intraepithelial carcinoma: an early event in ovarian high-grade serous carcinogenesis. 34, 829.
Kuhn, E., Wang, T.-L., Doberstein, K., Bahadirli-Talbott, A., Ayhan, A., Sehdev, A. S., Drapkin, R., Kurman, R. J., and Shih, I.-M. J. M. P. (2016). CCNE1 amplification and centrosome number abnormality in serous tubal intraepithelial carcinoma: further evidence supporting its role as a precursor of ovarian high-grade serous carcinoma. 29, 1254-1261.
Le Rhun, E., Duhamel, M., Wisztorski, M., Zairi, F., Maurage, C. A., Fournier, I., Reyns, N., and Salzet, M. (2015). METB-07 Classification of high grade glioma using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI): interim results of the GLIOMIC study. Neuro-Oncology 17, v136-v136.
Leblanc, E., Narducci, F., Farre, I., Peyrat, J.-P., Taieb, S., Adenis, C., and Vennin, P. J. G. o. (2011). Radical fimbriectomy: a reasonable temporary risk-reducing surgery for selected women with a germ line mutation of BRCA 1 or 2 genes? Rationale and preliminary development. 121, 472-476.
Lee, Y., Miron, A., Drapkin, R., Nucci, M., Medeiros, F., Saleemuddin, A., Garber, J., Birch, C., Mou, H., Gordon, R. J. T. J. o. P. A. J. o. t. P. S. o. G. B., and Ireland (2007). A candidate precursor to serous carcinoma that originates in the distal fallopian tube. 211, 26-35.
Levin, T. G., Powell, A. E., Davies, P. S., Silk, A. D., Dismuke, A. D., Anderson, E. C., Swain, J. R., and Wong, M. H. J. G. (2010). Characterization of the intestinal cancer stem cell marker CD166 in the human and mouse gastrointestinal tract. 139, 2072-2082. e2075.
Li, J., Zuo, X., Shi, J., Zhang, J., Duan, X., and Xu, G. J. N. (2018). Flotillin 1 is differentially expressed in human epithelial ovarian tumors. 65, 561-571.
Liang, W., Gao, R., Yang, M., Wang, X., Cheng, K., Shi, X., He, C., Li, Y., Wu, Y., and Shi, L. J. O. L. (2020). MARCKSL1 promotes the proliferation, migration and invasion of lung adenocarcinoma cells. 19, 2272-2280.
Lunter, P. C., Van Kilsdonk, J. W., Van Beek, H., Cornelissen, I. M., Bergers, M., Willems, P. H., van Muijen, G. N., and Swart, G. W. J. C. R. (2005). Activated leukocyte cell adhesion molecule (ALCAM/CD166/MEMD), a novel actor in invasive growth, controls matrix metalloproteinase activity. 65, 8801-8808.
Marcel, V., Ghayad, S. E., Belin, S., Therizols, G., Morel, A.-P., Solano-Gonzàlez, E., Vendrell, J. A., Hacot, S., Mertani, H. C., and Albaret, M. A. J. C. c. (2013). p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. 24, 318-330.
Marquard, A. M., Birkbak, N. J., Thomas, C. E., Favero, F., Krzystanek, M., Lefebvre, C., Ferte, C., Jamal-Hanjani, M., Wilson, G. A., Shafi, S., et al. (2015). TumorTracer: a method to identify the tissue of origin from the somatic mutations of a tumor specimen. BMC Med Genomics 8, 58.
Medeiros, F., Muto, M. G., Lee, Y., Elvin, J. A., Callahan, M. J., Feltmate, C., Garber, J. E., Cramer, D. W., and Crum, C. P. (2006a). The tubal fimbria is a preferred site for early adenocarcinoma in women with familial ovarian cancer syndrome. Am J Surg Pathol 30, 230-236.
Medeiros, F., Muto, M. G., Lee, Y., Elvin, J. A., Callahan, M. J., Feltmate, C., Garber, J. E., Cramer, D. W., and Crum, C. P. J. T. A. j. o. s. p. (2006b). The tubal fimbria is a preferred site for early adenocarcinoma in women with familial ovarian cancer syndrome. 30, 230-236.
Melendez-Zajgla, J., Mercado-Celis, G. E., Gaytan-Cervantes, J., Torres, A., Gabiño, N. B., Zapata-Tarres, M., Juarez-Villegas, L. E., Lezama, P., Maldonado, V., and Ruiz-Monroy, K. J. S. r. (2018). Genomics of a pediatric ovarian fibrosarcoma. Association with the DICER1 syndrome. 8, 1-12.
Mingels, M. (2015) Premalignancies of serous ovarian cancer in Müllerian derived epithelium, [Sl: sn].
Mingels, M. J., Van Ham, M. A., De Kievit, I. M., Snijders, M. P., Van Tilborg, A. A., Bulten, J., and Massuger, L. F. J. M. P. (2014). Müllerian precursor lesions in serous ovarian cancer patients: using the SEE-Fim and SEE-End protocol. 27, 1002-1013.
Mottaghi-Dastjerdi, N., Soltany-Rezaee-Rad, M., Sepehrizadeh, Z., Roshandel, G., Ebrahimifard, F., and Setayesh, N. (2016). Gene expression profiling revealed overexpression of vesicle amine transport protein-1 (VAT-1) as a potential oncogene in gastric cancer.
Newton, K., Petfalski, E., Tollervey, D., Cáceres, J. F. J. M., and biology, c. (2003). Fibrillarin is essential for early development and required for accumulation of an intron-encoded small nucleolar RNA in the mouse. 23, 8519-8527.
Ofori-Acquah, S. F., and King, J. A. J. T. R. (2008). Activated leukocyte cell adhesion molecule: a new paradox in cancer. 151, 122-128.
Pal, T., Permuth‐Wey, J., Betts, J. A., Krischer, J. P., Fiorica, J., Arango, H., LaPolla, J., Hoffman, M., Martino, M. A., and Wakeley, K. J. C. I. I. J. o. t. A. C. S. (2005). BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. 104, 2807-2816.
Pan, S., Cheng, L., White, J. T., Lu, W., Utleg, A. G., Yan, X., Urban, N. D., Drescher, C. W., Hood, L., and Lin, B. J. O. A. J. o. I. B. (2009). Quantitative proteomics analysis integrated with microarray data reveals that extracellular matrix proteins, catenins, and p53 binding protein 1 are important for chemotherapy response in ovarian cancers. 13, 345-354.
Pathan, M., Keerthikumar, S., Ang, C. S., Gangoda, L., Quek, C. Y., Williamson, N. A., Mouradov, D., Sieber, O. M., Simpson, R. J., and Salim, A. J. P. (2015). FunRich: An open access standalone functional enrichment and interaction network analysis tool. 15, 2597-2601.
Peluso, J. J. (2011). Progesterone signaling mediated through progesterone receptor membrane component-1 in ovarian cells with special emphasis on ovarian cancer. 76, 903-909.
Quanico, J., Franck, J., Cardon, T., Leblanc, E., Wisztorski, M., Salzet, M., and Fournier, I. (2016). NanoLC-MS coupling of liquid microjunction microextraction for on-tissue proteomic analysis. Biochim Biophys Acta.
Quanico, J., Franck, J., Dauly, C., Strupat, K., Dupuy, J., Day, R., Salzet, M., Fournier, I., and Wisztorski, M. (2013). Development of liquid microjunction extraction strategy for improving protein identification from tissue sections. Journal of proteomics 79, 200-218.
Roh, M. H., Yassin, Y., Miron, A., Mehra, K. K., Mehrad, M., Monte, N. M., Mutter, G. L., Nucci, M. R., Ning, G., and Mckeon, F. D. J. M. P. (2010). High-grade fimbrial-ovarian carcinomas are unified by altered p53, PTEN and PAX2 expression. 23, 1316-1324.
Rossetti, S., Wierzbicki, A. J., and Sacchi, N. (2018). Undermining ribosomal RNA transcription in both the nucleolus and mitochondrion: an offbeat approach to target MYC-driven cancer. Oncotarget 9, 5016.
Sanij, E., Diesch, J., Lesmana, A., Poortinga, G., Hein, N., Lidgerwood, G., Cameron, D. P., Ellul, J., Goodall, G. J., and Wong, L. H. (2015). A novel role for the Pol I transcription factor UBTF in maintaining genome stability through the regulation of highly transcribed Pol II genes. Genome research 25, 201-212.
Santin, A. D., Zhan, F., Bellone, S., Palmieri, M., Cane, S., Bignotti, E., Anfossi, S., Gokden, M., Dunn, D., and Roman, J. J. J. I. j. o. c. (2004). Gene expression profiles in primary ovarian serous papillary tumors and normal ovarian epithelium: identification of candidate molecular markers for ovarian cancer diagnosis and therapy. 112, 14-25.
Scatena, R., Bottoni, P., Pontoglio, A., and Giardina, B. J. P. C. A. (2010). Revisiting the Warburg effect in cancer cells with proteomics. The emergence of new approaches to diagnosis, prognosis and therapy. 4, 143-158.
Seidman, J. D., Horkayne-Szakaly, I., Haiba, M., Boice, C. R., Kurman, R. J., and Ronnett, B. M. J. I. j. o. g. p. (2004). The histologic type and stage distribution of ovarian carcinomas of surface epithelial origin. 23, 41-44.
Seidman, J. D., Yemelyanova, A., Zaino, R. J., and Kurman, R. J. J. I. j. o. g. p. (2011). The fallopian tube-peritoneal junction: a potential site of carcinogenesis. 30, 4-11.
Shimamura, M., Nagayama, Y., Matsuse, M., Yamashita, S., and Mitsutake, N. J. E. j. (2014). Analysis of multiple markers for cancer stem-like cells in human thyroid carcinoma cell lines. 61, 481-490.
Singh, N., Gilks, C. B., Wilkinson, N., and McCluggage, W. G. J. P. (2015). The secondary Müllerian system, field effect, BRCA, and tubal fimbria: our evolving understanding of the origin of tubo-ovarian high-grade serous carcinoma and why assignment of primary site matters. 47, 423-431.
Truitt, M. L., and Ruggero, D. J. N. R. C. (2016). New frontiers in translational control of the cancer genome. 16, 288.
Tyanova, S., and Cox, J. (2018). Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer research. In Cancer systems biology, (Springer), pp. 133-148.
Tyanova, S., Temu, T., Carlson, A., Sinitcyn, P., Mann, M., and Cox, J. (2015). Visualization of LC-MS/MS proteomics data in MaxQuant. Proteomics 15, 1453-1456.
Uhlen, M., Zhang, C., Lee, S., Sjöstedt, E., Fagerberg, L., Bidkhori, G., Benfeitas, R., Arif, M., Liu, Z., and Edfors, F. J. S. (2017). A pathology atlas of the human cancer transcriptome. 357, eaan2507.
Vanderperre, B., Lucier, J. F., Bissonnette, C., Motard, J., Tremblay, G., Vanderperre, S., Wisztorski, M., Salzet, M., Boisvert, F. M., and Roucou, X. (2013). Direct detection of alternative open reading frames translation products in human significantly expands the proteome. PLoS One 8, e70698.
Vang, R., Visvanathan, K., Gross, A., Maambo, E., Gupta, M., Kuhn, E., Li, R. F., Ronnett, B. M., Seidman, J. D., and Yemelyanova, A. J. I. j. o. g. p. (2012). Validation of an algorithm for the diagnosis of serous tubal intraepithelial carcinoma. 31, 243.
Vergara, D., Verri, T., Damato, M., Trerotola, M., Simeone, P., Franck, J., Fournier, I., Salzet, M., and Maffia, M. (2020). A Hidden Human Proteome Signature Characterizes the Epithelial Mesenchymal Transition Program. Curr Pharm Des 26, 372-375.
Vincent, A., Berthel, E., Dacheux, E., Magnard, C., and Venezia, N. L. D. J. B. J. (2016). BRCA1 affects protein phosphatase 6 signalling through its interaction with ANKRD28. 473, 949-960.
Visvanathan, K., Vang, R., Shaw, P., Gross, A., Soslow, R., Parkash, V., Shih, I.-M., and Kurman, R. J. J. T. A. j. o. s. p. (2011a). Diagnosis of serous tubal intraepithelial carcinoma based on morphologic and immunohistochemical features: a reproducibility study. 35, 1766.
Visvanathan, K., Vang, R., Shaw, P., Gross, A., Soslow, R., Parkash, V., Shih Ie, M., and Kurman, R. J. (2011b). Diagnosis of serous tubal intraepithelial carcinoma based on morphologic and immunohistochemical features: a reproducibility study. Am J Surg Pathol 35, 1766-1775.
Vizcaino, J. A., Deutsch, E. W., Wang, R., Csordas, A., Reisinger, F., Rios, D., Dianes, J. A., Sun, Z., Farrah, T., Bandeira, N., et al. (2014). ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32, 223-226.
Wisztorski, M., Desmons, A., Quanico, J., Fatou, B., Gimeno, J. P., Franck, J., Salzet, M., and Fournier, I. (2016). Spatially-resolved protein surface microsampling from tissue sections using liquid extraction surface analysis. Proteomics 16, 1622-1632.
Wisztorski, M., Fatou, B., Franck, J., Desmons, A., Farre, I., Leblanc, E., Fournier, I., and Salzet, M. (2013). Microproteomics by liquid extraction surface analysis: application to FFPE tissue to study the fimbria region of tubo-ovarian cancer. Proteomics Clin Appl 7, 234-240.
Wisztorski, M., Franck, J., Salzet, M., and Fournier, I. (2010). MALDI direct analysis and imaging of frozen versus FFPE tissues: what strategy for which sample? Methods Mol Biol 656, 303-322.
Wisztorski, M., Quanico, J., Franck, J., Fatou, B., Salzet, M., and Fournier, I. (2017). Droplet-Based Liquid Extraction for Spatially-Resolved Microproteomics Analysis of Tissue Sections. Methods Mol Biol 1618, 49-63.
Wu, R. C., Wang, P., Lin, S. F., Zhang, M., Song, Q., Chu, T., Wang, B. G., Kurman, R. J., Vang, R., and Kinzler, K. J. T. J. o. p. (2019). Genomic landscape and evolutionary trajectories of ovarian cancer precursor lesions. 248, 41-50.
Yamamoto, Y., Ning, G., Howitt, B. E., Mehra, K., Wu, L., Wang, X., Hong, Y., Kern, F., Wei, T. S., and Zhang, T. J. T. J. o. p. (2016). In vitro and in vivo correlates of physiological and neoplastic human Fallopian tube stem cells. 238, 519-530.
Yang, X., and Lazar, I. M. (2014). XMAn: a Homo sapiens mutated-peptide database for the MS analysis of cancerous cell states. Journal of proteome research 13, 5486-5495.
Yuryev, A., Kotelnikova, E., and Daraselia, N. (2009). Ariadne's ChemEffect and Pathway Studio knowledge base. Expert Opin Drug Discov 4, 1307-1318.
Zeppernick, F., Meinhold‐Heerlein, I., Shih, I. M. J. J. o. O., and Research, G. (2015). Precursors of ovarian cancer in the fallopian tube: Serous tubal intraepithelial carcinoma–an update. 41, 6-11.
Zhai, W., Comai, L. J. M., and biology, c. (2000). Repression of RNA polymerase I transcription by the tumor suppressor p53. 20, 5930-5938.
Zhang, X., Hong, S., Zhang, M., Cai, Q., Zhang, M., and Xu, C. J. N. (2018). Proteomic alterations of fibroblasts induced by ovarian cancer cells reveal potential cancer targets. 65, 104-112.
Zhao, G., Chen, J., Deng, Y., Gao, F., Zhu, J., Feng, Z., Lv, X., Zhao, Z. J. B., and communications, b. r. (2011). Identification of NDRG1-regulated genes associated with invasive potential in cervical and ovarian cancer cells. 408, 154-159.
Zhu, Y., Lin, J., Chen, J., Huang, Q., Shao, L., and Lai, M. J. Y. c. H. (2005). The expression of Staufen Gene in colorectal cancer. 27, 705-709.