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Abstract
Trustworthy machine learning requires a high level of interpretability of machine learning mod-
els, yet many models are inherently black-boxes. Training interpretable models instead — or
using them to mimic the black-box model — seems like a viable solution. In practice, how-
ever, these interpretable models are still unintelligible due to their size and complexity. In this
paper, we present an approach to explain the logic of large interpretable models that can be
represented as sets of logical rules by a simple, and thus intelligible, descriptive model. The
coarseness of this descriptive model and its fidelity to the original model can be controlled, so
that a user can understand the original model in varying levels of depth. We showcase and
discuss this approach on three real-world problems from healthcare, material science, and finance.
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1 Introduction

One of the key challenges for machine learning
(ML) models to be adopted in critical applica-
tions, such as autonomous driving and healthcare,
is that the model must be explainable [1]. The
explainability is not only demanded by practition-
ers, but is in fact required by law in the EU with
the European Parliament’s General Data Protec-
tion Regulation (GDPR) introducing the right
to receive explanations of decisions made by Al
systems. There are two different types of expla-
nations: (i) local explanations, i.e., a justification
for an individual decision, also termed post-hoc
explanation [1], and (ii) a global explanation of
the overall logic and behavior of a model. The
latter one is often a generalization of the former,
since from such an understanding of the model
individual decisions can be justified as well.

The usual way to have a global explanation
is to use a model that inherently allows such
an understanding. Typical examples are decision
trees, or rule ensembles. Studying the rules, or
equivalently the paths in the decision tree, allows
a user to understand the logic of the model, as
well as to justify individual predictions. If instead
an existing model that is not inherently explain-
able (i.e., a deep neural network) needs a global
explanation, then it can be obtained by training
an explainable mimic-model [2] that approximates
the black-box model’s behavior.

For explainable models to achieve high predic-
tive quality often requires them to be very large in
terms of their number of rules. This also holds for
mimic models that aspire to achieve high fidelity
to the original black-box model. For example, a
tree may have hundreds of nodes and tens of
levels, and a rule ensemble may consist of hun-
dreds of rules with complex conditions. Therefore,
models that are interpretable in principle often
remain beyond human perceptual and cognitive
capabilities due to their size [3].

A lot of prior research focussed on train-
ing compact explainable models, e.g., via special
tuning or post-processing [4] in order to reduce
the model size and improve its understandability.
However, the achievable degree of reduction is sig-
nificantly constrained by the striving to preserve
the prediction accuracy. Even more importantly,
such a mimic model will have a different logic
than the original model, and its relationship to

the original model will be unclear. Hence, instead
of explaining how the original model comes to
its predictions, the mimic model demonstrates
alternative ways to come to the same or similar
predictions. While this is, perhaps, the only viable
possibility when the original model is a true black
box, it may be less desirable when the model logic
can, in principle, be understood by a human. In
the latter case, a preferable approach would be to
facilitate the comprehension of the original model
logic rather than to substitute it by another logic.

In this paper, we present an approach to
facilitating comprehension of an existing model,
representable as a set of conjunction rules (e.g.,
rule ensembles themselves, decision trees, random
forests, tree ensembles), that is explainable in
principle but not in practice due to its size. The
idea is to extract the general logic from the model
by uniting its rules based on their similarity. A
union rule not only substitutes multiple original
rules, but also typically consists of fewer logical
conditions than each of the original rules. Thus,
the resulting set of union rules, even with addi-
tionally possible exceptions from them, becomes
more comprehensible.

Unlike the existing methods that aim at reduc-
ing the size of a model while preserving its accu-
racy on the data, our method creates a new model
that describes the original model at hand. The
original model serves as an input for the algo-
rithm and the output is a descriptive model of
the original model, having also the form of the set
of conjunctive rules. The purpose of this descrip-
tive model is not to make predictions for data
instances but to tell how the original model works.
Therefore, the descriptive model is not evaluated
in terms of the accuracy of its predictions but in
terms of its correspondence to the original model.
For this purpose, we introduce a novel measure
called Coherence Coefficient showing how consis-
tent the descriptive rules are with the rules they
are intended to describe. This measure allows for
a user to regulate the degree of inconsistency of
the descriptive model with the model at hand.

Hence, the very idea of our approach is princi-
pally different from the ideas behind the existing
methods for model simplification that strive to
preserve and improve the performance. Our con-
tributions thus are:
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e Introduction of an approach that produces a
descriptive model of a model that is explainable
in principle but too large for comprehension for
the purpose of facilitating the understanding of
the model logic.

® The achievable degree of simplification is not
restricted by the requirement to preserve the
prediction quality of the original model, differ-
ent from the multitude of known approaches for
training more compact rule-based models.

® Union rules of the descriptive model can be
explored in detail by tracing the hierarchy of
more specific rules that were involved in the
derivation of the union rules.

® The construction of the descriptive model is
fully transparent, and its relationship to the
original model is absolutely clear.

The remainder of this paper is organized as fol-
lows. We first discuss the relation of the proposed
approach to training compact (mimic) models
in Section 2. We then present our approach in
Section 3, followed by exploring the algorithm via
visualizations on a typical application in Section 4.
We empirically evaluate the approach in Section 5
and conclude by a discussion of the contribu-
tion and its limitations, as well as future work in
Section 6.

2 Related work discussion

In ML, certain types of models, namely, decision
trees, decision tables, and rules are considered to
be inherently interpretable [2], as they can be rep-
resented in a human-readable form. However, the
actual comprehensibility of such a model greatly
depends on its complexity [5, 6], which is typically
roughly estimated in terms of the model size [2].
Therefore, the existing ML algorithms that gener-
ate decision trees or rules usually strive to reduce
the model size by pruning the tree or compress-
ing the set of rules (e.g., RuleFit [7]) so that
the smaller model is still as accurate as the big
one. Making models more compact is a vast area
of research mainly due to the expected improve-
ments in generalization and stability properties of
the obtained solutions. Al-Akhras et al. [8] dis-
cuss a popular approach to avoiding overfitting in
decision trees in which a more compact tree is pro-
duced via reducing the amount of instances used
to build the model. The approaches directed to

reducing the amount of instances were surveyed
by Wilson and Martinez [9]. Pruning of decision
trees is another popular way to achieve higher
stability [10]. Helmbold and Schapire [11] pro-
pose an alternative algorithm that avoids pruning.
Compactness of sets of rules is also a matter of
concern. Dash et al. [12] propose an algorithm
for creating compact whilst sufficiently accurate
sets of rules using integer programming. In gen-
eral, enforcing sparseness of the learned rules is a
popular problem addressed by, e.g., Su et al. [13].
Alternative approaches propose a different inter-
pretable class of models that is trained in a way
to be sparse [14, 15].

The research on compressing intelligible mod-
els is mostly based on the regularization tech-
niques applied while training. Thus, Joly et al. [16]
propose to use L1 compression for random forests
in order to decrease the prohibitively long com-
putation time for the big forests. Alternatively,
Painsky and Rosset [17] propose to encode a ran-
dom forest in a lossless or lossy with guarantees
way, which allows not to store the full models—
motivated by the limitations of the storage space.
Sometimes an interpretable by design model is
even compressed into a black box model, like a
neural network [18], in order to sustain the small
storage space and high performance. In general,
aforementioned works aim at achieving more sta-
ble, smaller and better generalizing intelligible
models while training. Big restriction to the degree
of the compactness is always final performance of
the model [19].

On the other hand, while the creation of rule-
based mimic models is a typical approach to
explaining the behavior of black-box models, such
as neural networks [2], the research on improving
the thereby obtained explanations is on-going. It is
clear, that applying pruning or other compression
training techniques when trying to mimic a com-
plex black-box model will lead to a loss in fidelity.
To achieve both goals, Qiao et al. [20] recently
proposed a novel approach in which a set of deci-
sion rules is generated by a neural network with
a special two-layer architecture. The authors also
proposed a sparsity-based regularisation approach
to balance between classification accuracy and the
simplicity of the derived rules. For now this is a
limited approach, that does not allow to work with
any black-box model at hand.
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So, current research, on the one hand, acknowl-
edges the problem of comprehending large rules
sets or decision trees, on the other hand, does
not consider the possibility of creating approxi-
mate simpler descriptive models instead of directly
training more compact ones. Note that creating a
descriptive model that helps to interpret the origi-
nal model is fundamentally different from training
a more compact model with similar accuracy. The
descriptive model seeks to explain a given model
at hand, while training a different, more compact
model seeks to replace it and makes it much harder
to connect functionality of the initial black-box
with the interpretable and compact mimic model.

Freitas [21] discusses that decision trees and
rules have different properties in terms of inter-
pretability and that decision trees are usually
perceived better when transformed to rules sets.
This is also confirmed by Quinlan [22], who consid-
ers multiple approaches to pruning decision trees
and finalises with the transformation to rules as
a help for understanding. A random forest model
consisting of multiple trees can also be trans-
formed to a set of rules, for example, using a
novel approach from Bénard et al. [23], which is
close to the RuleFit [7]. Furthermore, it is argued
that a representation in the form of rules can
be more compact than a decision tree, because
rules can include only significant clauses and have
no repeated occurrences of the same variable [2].
Another work [24] discusses high redundancy in
decision trees and proposes a method for extract-
ing non-redundant rule-like explanations from a
decision tree. The arguments about advantages
of rules over trees substantiate the focus of our
research on sets of rules.

Since our approach involves unions of rules, it
is partly related to the works where rules or deci-
sion trees are merged for various purposes. Hier-
archical merging of several trees was addressed in
the context of the problem of learning decision
trees from multiple sources of the data—so the
challenge is to produce one tree that will cover
the decisions of others [25]. Another problem that
is addressed is construction of consensus trees
from different ones with the goal of producing a
more stable model [26]. A framework for com-
bining multiple rule-based models that have been
created for different subproblems is proposed by
Strecht et al. [27]. Rules from different models are
combined by computing their intersections. After

resolving conflicts, the resulting rules set is min-
imised by uniting nearly-identical rules. A similar
approach to joining rules is taken by Andrzejak et
al. [28]. Our approach also involves an operation of
rule union, but, unlike others, it allows controlled
decrease of rule accuracy for achieving a higher
degree of simplification.

Our research involves not only the devel-
opment of an algorithmic method to obtain a
descriptive model, but also the creation of inter-
active visual techniques for exploring sets of rules
and investigating the behavior and results of
the algorithm. Combining computational methods
with interactive visual interfaces is at the core of
Visual Analytics (VA) [29]. In particular, VA tech-
niques allow human experts to be involved in the
creation of ML models [30]. This way, humans can
contribute not only their background knowledge,
but also new knowledge gained in the process of
interactive data analysis [31] through discovery
and abstraction of patterns existing in data [32].
Currently, the problem of explaining ML /AT mod-
els is receiving much attention in VA [33]; however,
the techniques proposed so far address mostly the
needs of model developers rather than domain
experts. As an exception, RuleMatrix [34] visual-
izes rule sets for users with little machine learning
experience, but it does not address the problem of
model simplification and is severely limited by the
size of the rule set.

In the area of visualization research, a compar-
ative evaluation of four basic techniques for visual
representation of rules sets, namely, symbolic and
graphical encoding of conditions with and without
vertical alignment of conditions referring to the
same features, has been conducted recently [35].
The experiments showed the superiority of the
representations that use feature alignment, which
is valid for our table view. Graphical encoding
is advantageous to textual, although the effect
is less pronounced compared to that of feature
alignment. However, the experiments were con-
ducted using small sets of rules, whereas effective
visualization of large models is still a challenging
task.
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3 Rules set simplification

3.1 Main concepts

In the following we define the terms that we will be
using throughout the paper. We assume that one
wants to interpret a predictive model h : X — )Y
at hand with input and output spaces X, resp.
Y that can be rewritten as a collection of rules,
i.e., h = R, where each rule R € R consists of
an antecedent which is a conjunction of condi-
tions and consequent which is a prediction r of the
rule. The input space X consists of instances with
d features f;,i = [d], which can be numerical or
categorical. The output space ) can be either cate-
gorical for classification or numerical for regression
tasks.

A condition cis a logical expression of the form
fi € V, where V can be a set of values (for a
categorical f;) or an interval (for a numeric f;)
that is restricting the values that f; can get. Such
c can be a splitting condition from a decision tree
node or a part of a conjunctive logical rule.

Definition 1. A condition ¢; = (f; € V1) sub-
sumes another condition co = (f; € Va) iff i =j
and Vo C V1. A rule R; subsumes or covers
rule Ry Ry O R, if every condition of rule Ry
subsumes some condition of rule Rs.

By definition, any rule covers itself. When
Ry O Ry and Ry # Ry, then R; is more general
and R, is more specific. Note that Re may include
conditions involving features that do not appear
in conditions of Ry, i.e., Ry may have fewer con-
ditions than Rs. For each rule R € R, where R is
the set of all rules in the model, we can identify set
of rules R= that are covered by it. When the set
of rules R is optimal in the sense of our approach
such sets are trivial R= = {R}.

Definition 2. Predictions of two rules Ry and
Ry, denoted by r1 and ro, are congruent vy = ry
if one of the following conditions holds:

® ry=7rg;
e |ry —ro| < e when ry and ro are numbers;
o up uUpN s low plowy « h d
max(ry?, re?)—min(ri®”, r2%) < e whenry an
ro are numeric intervals, 1y = [, ri'?] =
2 , T =y, |, T2 =
low ,up
[T2 »Tg ]

)

where € 1s a tolerance threshold used during the
run of the algorithm.

Note, that the last case of intervals is needed
for the further work of the algorithm with union
rules (defined in the following).

Definition 3. We say that R1 O Ry correctly, if
r1 = ro. In this case the coverage of Ry by Ry
is correct; otherwise, the coverage is wrong. If
R1 O Ry wrongly, then Ry is an exception of the
covering rule R .

Definition 4. The coherence coefficient (CC)
of a rule is the ratio of the number of correctly
covered rules to the total number of covered rules:

_ |R200r'rect‘

COR) = =,

Definition 5. A rule whose CC < 1, i.e., a rule
having at least one exception, is called a rough
rule.

Definition 6. A roughness threshold p € [0, 1]
defines the minimal acceptable value of CC of a
rule included in a descriptive model during the run
of the algorithm.

So, specifying p = 1 means that no rough
rules are allowed, and the smaller p gets, the more
exceptions rough rules are allowed to have.

For a better understanding of the concept
of rule coverage, imagine the multidimensional
space of the features (assuming, for simplicity,
that all features are numeric). Conditions of a
rule antecedent define a multidimensional shape
(namely, a rectangular hyper-parallelepiped) in
this space. When some feature f; is not used
in a rule explicitly, it can be treated as being
involved in an implicit condition f; € V where
V' is the whole range of possible feature values.
A rule R; covers rule Ry (Definition 1) when the
shape p; defined by R; includes the shape ps
defined by Rs. Please note that any rectangular
parallelepiped p in this space corresponds to some
conjunction of conditions, even if there is no rule
with such an antecedent. For two or more shapes,
it is possible to create a rectangular parallelepiped
that encloses all these shapes. The smallest paral-
lelepiped p“ enclosing the shapes p; and ps defined
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by the conditions of rules R; and Ry represents
the union of the antecedents of Ry and Rs.

When we apply the union operation also to
the predictions r; and ro of the rules Ry and Rs,
we obtain a new rule RY, which is the union of
the rules Ry and Ry. The rule R is meaningful
only when the predictions r; and re are congru-
ent (Definition 2); so, our algorithm makes unions
only from rules with congruent predictions.

Accidentally, p“, apart from p; and po,
may also include parallelepipeds corresponding to
antecedents of some other rules; hence, a union
RY of two rules Ry and R, may additionally cover
other rules. Some of those other rules may have
predictions incongruent to the prediction of R".
In such a case, R is a rough rule (Definition 4),
and the rules with incongruent predictions are its
exceptions (Definition 3).

Let us now define the union of two rules more
formally.

Definition 7. A union of two conditions ¢, =
(fi € Vi) and co = (f; € Va) involving the same
feature f; is the condition c” = (f; € VV), where

o VY =(V1UVs) if V1 and Vs are sets of discrete
values;

e VY = [min(vl°w, o), mazx(vi?, vy?)] if Vi =
[viow vP] and Vo = [v5", v5?] are intervals.

Definition 8. A union of two predictions rq

and 9, denoted vV, is defined as
o vV = =1y when v = ry,

o U = i Ury when vy and o are distinct sets of

discrete values,
o Y = [min(rlw, rlov) maz(ri?, r3?)] when rq
and 1o are numeric intervals, 1 = [riev 7],

T2 = [leow,r;p]_

up

Definition 9. A wunion of two rules R; and
Ro with congruent predictions r1 and ro is a rule
R where each condition is a union of conditions
from Ry and Ry according to Definition 7 and the
prediction vV is the union of 11 and ro according
to Definition 8. Since union is defined for congru-
ent rules, it follows that R® D Ry and R° D Ry
correctly.

3.2 Distance function

In order to perform the hierarchical merging of
rules, we define a distance function on the space of
rule antecedents. We set the distance between two
rule antecedents to be the sum of the distances
between the value intervals V' of the same feature
fi in the conditions of the rules. So if ¢; = f; €
[vlow vi?] and cp = fi € [v§°¥, v5"], then distance
between ¢ and cg is

oA — ol | 4 o — o)

2 (Umaa: - vmin)

dy, =

i

where v,,4; and v, are the absolute maximal
and minimal, respectively, values of the feature f;
that may occur in practice. This distance metric
is, in fact, a specific formulation of the Hausdorff
distance [36] for numeric intervals. The division
by (Umaz — Umin) is done for normalization of all
distances between conditions to the interval [0, 1].

For categorical features, rule conditions con-
tain discrete sets of categorical values instead
of numeric intervals. In this case, the distance
between two conditions can be defined as the Jac-
card similarity index [37] subtracted from 1, i.e.,
ifcy = f;, € Aand ¢ = f; € B, where A and B
are sets, then

ds, =1—|ANB|/|AUB]

The distance equals 0 when A and B are identical
and 1 when the sets have no common elements.

Based on the distances between corre-
sponding conditions, the distance between the
rules R; and Ry is >, 1, dy,, where f; €
{features used in Ry and Ry}. It corresponds to
the definition of the Manhattan distance. The
interval endpoints are normalised to values
between 0 and 1: When some feature is absent in
the conditions of one of the rules, it is assumed to
have an interval from 0 to 1. Note that since we
are not aiming at creating a new compact model
that will be used on novel data, this assumption
makes sense.

Note that the distance metric is defined solely
for the rule antecedents and does not take into
account the rule predictions. Since merging is
applied only to the rules with congruent predic-
tions, there is no need to include the predictions in
the calculation of the rule similarity. Besides, the
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distance metric defined in this way can be used
for detection of similar rules with incongruent pre-
dictions, which may be useful in examining the
quality of a rule set.

3.3 Basic algorithm for rules set
generalization

Input

® A classification or regression model in the form
of a set of rules or a decision tree. In the latter
case, the tree is transformed to an equivalent set
of rules by one of existing methods (e.g., [38]).

e A roughness threshold p (Definition 6).

® Optional: For a regression model, a tolerance
threshold e (Definition 2).

Output

A set of rules such that:

1. each original rule is correctly covered by
some resulting rule (Definitions 1, 3);

2. the resulting set of rules has smaller cardi-
nality than the original one. In case when the
resulting set of rules has the same cardinality
as the original one, we say that the algorithm
failed;

3. the coherence coefficient (Definition 4) of any
union rule in the resulting set is not less
than the roughness threshold, i.e., CC >
p (Definition 6).

The pseudocode of the rules set generalization
algorithm is given below (Alg. 1).

The algorithm repeatedly finds the closest
(according to the defined distance metric) pair
of rules whose predictions are congruent by Def-
inition 2 and applies the operation of rule union
(Definition 9). If the united rule has CC > p (Detf-
initions 4, 6), it substitutes the two rules it was
produced from; otherwise, it is discarded. After
accepting a new rule, the algorithm searches for
the other rules that are correctly covered by this
rule (Definitions 1-3) and, if found, removes them
from the resulting set. The algorithm terminates
when no new union rule was accepted during an
iteration.

3.4 Checking Fidelity in Terms of
Data Predictions

Since a union rule is more general than the rules
it has been derived from, it may be applica-
ble to additional data instances not described by
the original rules. For some of these additional
instances, the prediction of the union rule may be
incongruent with the predictions of correspond-
ing rules from the original model. If we consider
some reference dataset, that we have at hand (not
necessarily the training dataset used for the origi-
nal black-box model), we can define the following
notion of fidelity.

Definition 10. The fidelity of a union rule
with respect to the original rules set is the ratio
of the number of data instances in some reference
dataset (e.g., the set from which the model was
derived) for which the union rule gives predictions
congruent to the predictions of the original model
to the total number of data instances this rule is
applicadle to.

Definition 11. The overall fidelity of a
descriptive model, i.e., a generalized Tules set,
with respect to the original model is the ratio of the
number of data instances in the reference dataset
for which the descriptive model gives predictions
congruent to the predictions of the original model
to the total number of data instances both models
are applicable to.

When some set of data instances described by
the original rules set is available, the fidelity of
the derived union rules to the original predictions
can be additionally checked. A reasonable require-
ment is that the fidelity must not be less than
p- A condition for checking the fidelity should be
added in the “if” statement on line 16 of the
Alg. 1, i.e., the extended condition is CC(R") >
p A fidelity(R°) > p.

3.5 Iterative lowering of the
roughness threshold

There is a possibility to apply Algorithm 1 in an
iterative manner. For this purpose, the user spec-
ifies an interval [p'°¥, p“P] and a step A(p), where
A(p) < p*? — plow. Algorithm 1 is executed sev-
eral times with consecutively setting the roughness
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Algorithm 1 generalization of the set of rules

> find distances between all congruent rules in the set

> apply Definition 2

> find the minimal distance pair

> unite the closest rules according to Definition 9

> check if the union is acceptable according to Definition 6

> remove all correctly covered rules (Definitions 1-3)

Input R

Output RY
1: Rg — R
2: changed « T'rue
3: while changed do
4: PD <+ o
5: for each (R;,R;): Ri € RY,R; € RY,i +# j do
6: if congruent(r;,r;) then
7 d;j < distance(R;, R;)
8: PD(—PDU{(Ri,Rj,dij>}
9: end if
10: end for
11: changed < False
12: while PD # & A —changed do
13: (4,7) < argming, ;PD
14: PD%PD\{(R%Rj,dij)}
15: R + R; U Rj
16: if CC(R"”) > p then
17: RY «— RY \ {R“ RJ}
18: for each R;, € RY do
19: if congruent(ry, %) A RY D Ry, then
20: RY « RY\ {Ry}
21: end if
22: end for
23: RY « RY U{R"}
24: changed < True
25: end if
26: end while

27: end while

threshold p to p“?, p*? — A(p), ..., p'°%, i.e., start-
ing from p“P and decreasing the threshold in each
following run by A(p). The output of run ¢ is used
as the input of run ¢ + 1.

This extension of the method prioritises more
coherent rules, i.e., it will strive to produce united
rules with higher C'C before attempting to achieve
higher compression at the cost of reducing the
coherence.

To demonstrate possible differences between
the results of the basic algorithm and its multi-
step variant, Fig. 1 shows two projection displays
where rules are represented by dots. The dots
are arranged on a plane based on the distances
between the rules. The projections have been
obtained using the method t-SNE [39]. The dot
colours encode the predictions and the sizes are
proportional to the number of the data instances

the rule applies to. The lines connect dots repre-
senting rules that were united by the generaliza-
tion algorithm. The display on the left corresponds
to the base algorithm and the one on the right
to the multi-step variant. The dots marked in
black represent a group of original rules that were
united in a single rule by the multi-step variant
and included in three different unions by the base
variant.

The illustrations refer to an example classifi-
cation model consisting of 109 rules including in
total 818 conditions. With the roughness threshold
of 0.6, the base variant reduces the original set to
54 rules with 342 conditions, of which 33 rules are
the same as in the original set (i.e., the algorithm
cannot generalize them) and 21 rules are unions
obtained from 76 original rules. The coherence
coefficient of the union rules ranges from 0.6 to 1;
however, only one union has CC = 1, three rules
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Fig. 1 Two displays demonstrate differences between results of the base algorithm (left) and the multi-step variant (right).
The lines connect dots corresponding to rules that were united by the respective variants of the algorithm. The dots marked
in black in both displays represent the same selected group of original rules that were united into a single rule by the
multi-step variant and included in three different unions by the base algorithm.

have C'C from 0.71 to 0.78, and the remaining 17
rules have CC < 0.67.

The multi-step variant that iteratively lowers
the roughness threshold from 1 to 0.6 in steps of
0.05 reduces the original set to 62 rules with 399
conditions, where 43 rules remain the same as in
the original set and 19 rules are unions. The coher-
ence coefficient of the union rules ranges from 0.67
to 1, where 5 rules have C'C = 1, 6 rules have
CC from 0.7 to 0.8, and the remaining 8 rules
have CC' = 0.67. Hence, the multi-step variant
produces more accurate union rules but achieves
a lower degree of generalization and compression
than the base algorithm.

4 Visualizations

We have designed and implemented several visu-
alizations that allow researchers to explore rules
sets and to investigate the work of our algorithm?.
This helps to see and interpret the working of
the algorithm. Please note that the visualizations

!Similar visualizations can be used in explaining models to
users; however, user-centered design and user evaluation are
necessary for ensuring that visualizations are effective, well
understood, and easy to use, which is beyond the scope of this
paper.

are not a part of the rule generalization method
and our prototype implementation of the pro-
posed approach is limited to dealing with rules
in which the conditions involve only numeric fea-
tures. However, this limitation does not pertain to
the approach itself.

We display a set of rules in the form of a table,
as shown in Fig. 2. Each table row corresponds
to one rule, each table column corresponds to one
feature. Value intervals of the conditions are repre-
sented by horizontal bars, which show the relative
position of the interval between the minimal and
maximal feature values. If a feature is not used in
a rule, the corresponding cell is empty. Besides,
there in a column entitled “Rule”, where each rule
is represented as a whole by a glyph with vertical
axes corresponding to all available features and
vertical bars corresponding to the features used in
the rule.

A table showing the results of the rule gen-
eralization algorithm (Fig. 3) includes additional
columns containing (1) counts of correct and
wrong applications of the rule to data instances,
(2) counts of correctly and wrongly covered origi-
nal rules, (3) fidelity, (4) coherence coefficient, (5)
number of rules in the derivation hierarchy, and
(6) depth of the hierarchy.
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Fig. 2 A fragment of a table representing rules in a graphical form. The rows are ordered by rule similarity using the
algorithm OPTICS [40] applying the distance function introduced in Sec. 3.
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Fig. 3 A fragment of a table representing results of rule generalization.

Rule 1

Action 1

Coherence (rule-based) 0.71 N correctly covered 5 N wrongly covered 2

Fidelity (data-based) 0.87 N congruent predictions 46 N incongruent predictions 7

N subordinate rulss 8 Hierarchy depth 4

Who

|Feature |min ‘max

| MSTV - mean value of shortterm variabilty [ 0.2000 | -inf | 0.6500 | 7.0000

[~LTv - percentage oftme with aonorma long term vanavilty|[0.0000 ]| -in [ s2.5000]| 91.0000

| FI - # of fetal movements per second |n 0000 | -inf |159 0000 ‘439 0000

Rule 15 Action 1

Coherence (rule-based) 1.00 M correctly covered 1 N wrongly covered 0

Fidelity (data-based) 1.00 N congruent predictions 1 Nincongruent predictions 0

I [
[

Besides, it includes a graphical representation of
the rule in a form of a glyph. A glyph representing
a rule includes as many vertical axes as there are
features used in the whole set of rules (as well as in
the "Rule® column of the table). For each feature
that is used in the given rule, there is a vertical bar
drawn on top of the corresponding axis. The bar
represents the interval of the feature values that is
specified in the rule condition involving this fea-
ture. While the whole length of the axis represents
the full range of the feature values (i.e., from the
minimal to the maximal values that occur in the
dataset), the vertical positions of the lower and
upper sides of the bar correspond to the lower and
upper ends of the value interval specified in the
rule condition.

Another type of display we use is a panel with
multiple rules represented by glyphs, as shown in

Featie mn |[rom e = Fig. 5. A popup window with rule details, as in
WSTV - mean value of shortterm variabiliy | 0.2000]| 0.5500 +inf|  7.0000 Fig, 4, can be obtained by pointing on a glyph.
[ASTV - percentage of time with aonormal shartterm variasitiy || 12.0000][62.5000 [ +inf | 85.0000

Mean - histogram mean | 73.0000/| it [107.5000 [182.0000

+inf | 18.0000

\
‘ Nmax - # of istogram peaks | 0.0000][11.5000]|
\

Wax - Maximum of FHR histogram [ 136.0000 | -inf [220.6000 [238.0000

Fig. 4 Examples of popup windows with detailed infor-
mation about individual rules.

Detailed information about a rule is provided
in a popup window (Fig. 4) appearing when the
user points on a table row. The window shows all
conditions of the rule as well as the minimal and
maximal values of all features involved in the rule.

Comparison of the rules is supported by a mode
of glyph drawing in which conditions of one rule
are represented by hollow bars with black frames
and conditions of one or more previously selected
rules are represented by filled semi-transparent
bars without frames. The bar shading is darker
where feature value intervals from two or more
selected rules overlap. For example, in Fig. 5, the
conditions of three selected rules (their glyphs
have black frames around them) are represented
within all glyphs in the display. Rules are selected
by clicking on their glyphs or rows in a table view.
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Fig. 5 A display with multiple rules represented by glyphs. The numeric labels are rule identifiers. The colours of the
glyph frames encode the predictions made by the rules. Three selected rules are marked by additional black frames. The
conditions from the selected rules are represented in all glyphs by semi-transparent vertical bars shaded in cyan.
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Fig. 6 An illustration of the concept of rule coverage. The colours of the glyph frames represent the predicted classes of
the rules. The rule shown on the top left covers the remaining 9 rules, of which 6 are covered correctly and 3 wrongly.

Juﬂ u“u

Fig. 7 An illustration of rule union. The glyphs on the
right represent two original rules and the glyph on the
left their union. The conditions of the original rules are
represented by bars shaded in cyan.

Fig. 6 illustrates the concept of rule cover-
age. Here, the rule shown on the top left (it is
selected, so that the glyph is marked with a black
frame) covers the remaining rules represented in
the image. The conditions of the covering rule are
represented in all glyphs by cyan-shaded bars. The
colours of the glyph frames encode the predicted
classes of the rules. Five of the nine covered rules
have the same prediction as the covering rule and
three rules have a different one. Hence, five rules
are covered correctly and three rules incorrectly.

Fig. 7 illustrates the operation of rule union.
Two original rules are shown on the right and their
union on the left. The original rules are selected,
and their conditions are represented by cyan-
shaded bars in all three glyphs. Darker bar shading
signifies overlapping conditions. The first four con-
ditions and the seventh condition are identical in
the two original rules; so, the same conditions are
included in the union rule. In the fifth and eighths
conditions, the value interval of one rule includes
the value interval of the other rule; so, the union

rule includes the larger intervals. In the sixth and
ninth conditions, the value intervals do not over-
lap; so, the union contains the interval from the
lower end of the lower interval to the upper end of
the higher interval. There are two conditions with
features appearing only in one of the original rules.
For these features, the union has no conditions.

The numbers 0.80 and 0.99 above and below
the glyph of the union rule represent the coher-
ence coefficient and the fidelity of the union rule,
respectively. In this example, the union rule covers
four original rules correctly and one original rule
incorrectly; so, it is a rough rule with CC = 4/(4+
1) = 0.8. This union rule gives the same predic-
tions as the original model for 963 data instances
and different predictions for 8 data instances;
hence, its fidelity is 963/(963 4+ 8) = 0.99.

Fig. 8 illustrates the work of the algorithm by
example of deriving one generalized rule. Original
and derived rules are represented by glyphs. The
lines represent inclusions of rules into more gen-
eral rules covering them. In one of the iteration
steps, the algorithm unites original rules labelled
25 and 51 (on the upper right of the image) into
a union rule shown in the centre of the upper row
of glyphs. In another step, the algorithm unites
original rules 91 and 99, which are shown in the
lower right corner of the display. In one of the
following steps, the algorithm unites the earlier
produced union of the rules 25 and 51 (top mid-
dle) with an original rule labelled 5 (its glyph is
in the middle of the figure). The resulting union
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Fig. 8 A representation of the derivation hierarchy of a rule.

rule is shown on the top left. The algorithm finds
out that this rule also covers two other rules, an
original rule labelled 35 and the earlier obtained
union of the rules 91 and 99. The glyphs of these
rules are drawn in the central part of the dis-
play below the glyphs of the two rules that have
been united. Hence, the final union rule generalizes
6 original rules. In deriving it, two intermediate
unions have been made. The coherence coefficient
of the final rule is 0.75. The rules correctly and
wrongly covered by this rule are shown in Fig. 6.

5 Experiments

We describe our investigation of 4 models
from three real-world tasks. For each rules
set, we ran the basic rule generalization algo-
rithm 9 times setting the parameter p to
1.00,0.95,0.90,0.85, ..., 0.60. Each run was applied
to the original rules set. For each run we are
analysing the statistics that describe the compre-
hensibility of the compressed model (the number
of the resulting rules, the total number of con-
ditions in all the rules, the mean number of
conditions per rule, the number and percentage of
the rules including more than 5 conditions, con-
sidered as complex), the roughness of the descrip-
tive model (the minimal CC that was actually
achieved, the minimal fidelity of a rule, the total

fidelity of the whole rules set, and the number of
rough rules), and the characteristics of the algo-
rithm work (the number of generated union rules
and the maximal depth of a rule derivation hier-
archy). While the first group of the results allows
to access the interpretability, the second and third
ones give a deeper understanding of the mechanics
that allows to achieve such compressed descriptive
model. It is important to note once again, that our
aim is to interpret the global logic of a model at
hand, not to understand the data. So we achieve
our goal if we can explain the main rules learned
by the model, the main features that affect its
decisions, the possible outliers that require highly
specific rules, etc.

5.1 Cardiocartography dataset

Since medical domain is of high interest for inter-
pretability opportunities, as a primal experiment
we looked at a medical dataset. It is an UCI [41]
dataset of cardiocartography records [42]. It con-
tains 2126 fetal cardiotocograms for which various
diagnostic features were measured. They were
classified with respect to a morphologic pattern
into 10 classes and to a fetal state into 3 classes.
For both cases we directly learned a decision tree
and analysed them using our algorithm.



13

Springer Nature 2021 ETEX template

3 classes task

The 3 classes model consists of 109 rules describ-
ing 1700 data instances of the training dataset.
The statistical characteristics of the generalized
rules sets obtained for different settings of the
parameter p are presented in Fig. 9.

It can be noticed that decreasing the roughness
threshold p from 1 to 0.85 does not lead to gener-
ation of any rough rule, i.e., none of the resulting
rules has exceptions. However, the union rules,
even when their CC = 1, are more general than
the original rules and applicable to larger subsets
of the data instances, which may include instances
with incongruent predictions. Hence, union rules
may be fully coherent with regard to the cov-
ered original rules, but at the same moment their
fidelity may be less than 1.

Another observation is that there are many
original rules that cannot be united with others
and remain standalone even when the roughness
threshold is low. Thus, for p = 0.60, only 21
out of 54 rules in the resulting model are union
rules. Nevertheless, the achievable degree of sim-
plification can be judged as quite high, especially
in terms of the number of conditions and the
proportion of complex rules with more than 5
conditions. Moreover, such rules help to identify
outlier instances that require different logic than
most of the other ones. For example, the rule on
the right of Fig. 4 describes only one data instance,
and it could not be united with any other rule.

An important property of the generalized rules
set is that simpler rules (i.e., including fewer con-
ditions) describe a much larger proportion of the
data instances than in the original model. So, the
minimal number of conditions in one rule is 3 in
the original model and 1 in the simplified versions
obtained with p = 0.65 and p = 0.60 (the max-
imal number of conditions per rule is 12 in all
models). The original model contains 4 rules with
3 conditions describing 47 data instances, 7 rules
with 4 conditions describing 62 instances, and 23
rules with 5 conditions describing 163 instances.
Taken together, the 34 simpler rules describe 272
data instances out of 1700, i.e., only 16%. In the
model obtained with p = 0.65, the numbers of
the rules including from 1 to 5 conditions are,
respectively, 2,1,6,9, and 11, and these 29 rules
describe 1009, 36, 201, 200, and 48 data instances,
respectively, i.e., 1494 instances in total. As two

or more rules from a generalized model may be
applicable to the same data instances, the cumu-
lative number of the data instances correctly (i.e.,
in congruence with the original model) described
by the model with p = 0.65 is 2709, and thus
the simplest rules make 55% (1494/2709 * 100)
of the correct descriptions. However, these rules
describe 96 data instances incorrectly, i.e., their
joint fidelity is 0.94 = 1494/(1494 + 96).

Hence, there are multiple aspects of simplifi-
cation: the number of rules, the number of con-
ditions, the proportion of simple rules, and the
proportion of the data described by these sim-
ple rules. Moreover, the conditions of the simplest
rules applicable to large number of instances indi-
cate which features have higher importance than
others. For example, the model with p = 0.65
contains a rule with a single condition “If his-
togram mode < 148.5 then class = 1”7 correctly
describing 881 data instances and having fidelity
0.97. This rule reveals the importance of the fea-
ture “histogram mode”. Another example, is that
percentage of time with abnormal short term vari-
ability is rather low for class 1 (healthy), but gets
higher for 2 and 3 (suspect and pathology), at the
same moment the histogram mean is lower for the
pathology class, compared to other two.

Additionally we investigated the effects of
model pruning on the performance of our algo-
rithm and presented the results in Section 5.4.

10 classes task

This dataset allows us to see the difference
between interpretability for simpler and more
complex task on the same data features. Decision
tree for 10 classes consists of 202 rules describ-
ing the same 1700 data instances of the training
dataset. The descriptive statistics of the results of
the experiments are shown in Fig. 10. As it could
be expected, the potential for compression and
generalization is lower when the number of classes
is higher due to the congruence requirement. Com-
pared to the 3-class model, the 10-class model
also consists of more complex rules, i.e., ones that
have more conditions. The generalization increases
the proportion of simpler rules having up to 5
conditions, which contributes to better compre-
hensibility, along with the decrease of the number
of the rules. The fact that with p = 0.60 we see
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Fig. 9 Results of experimenting with the 3-classes classification model trained on the cardiocartography dataset.

many more union rules that are not rough, com-
pared to the 3-class model also confirms that the
global logic of the model is more complex.

5.2 Home Equity Line of Credit
(HELOC), 2 classes

This example application is based on the Explain-
able Machine Learning Challenge organised by
a group of commercial and academic organi-
sations 2. Based on an anonymised dataset of
applications made by homeowners, the challenge
requires creation of a readily explainable model
predicting the value of the variable Risk Perfor-
mance, which may be either “bad” or “good”. In
order to allow a correct decision tree creation, we
excluded records with special values and two cat-
egorical features. We first created an obviously
incomprehensible random forest model with 50
trees without depth restriction, that achieves per-
fect accuracy, and then generated a mimic model
approximating the behavior of the random forest
model. The mimic model consists of 384 rules con-
taining in total 3019 conditions which involve 21
features with numeric value domains. The statis-
tics describing the results of the generalization are
presented in Fig. 11.

It can be seen that the mimic model can be
slightly simplified even with p = 1. It means that
the model has some redundancies. While increas-
ing the degree of simplification, the total fidelity of
the simplified model to the original one decreases
gradually but more substantially than it was in
other experiments. A probable reason is high sim-
ilarities between rules giving opposite predictions:

2See https://community.fico.com/s/
explainable-machine-learning-challenge

when a rule gets more general, it may become
applicable to additional data instances that are
described by other rules, even if it does not cover
those other rules (i.e., the conditions of the rules
partly overlap). The projection plot on the left
of Fig. 12 supports this guess: blue and red dots
representing rules with negative and positive out-
comes, respectively, tend to be very close in the
plot. An interesting side effect of the simplification
is that it increases the separation, i.e., the dis-
similarity between the rules with the positive and
negative outcomes. This can be seen from compar-
ing the projection of the original rules set on the
left of Fig. 12 to the projections of the simplified
rules sets obtained with p = 0.85 (Fig. 12, center)
and with p = 0.75 (Fig. 12, right).

The similarities between rules are demon-
strated in Fig. 13, where a table displays a group
of rules represented by a cluster of closely posi-
tioned dots in the projection plot shown in Fig. 12,
left. The cluster has been interactively selected
by dragging a frame around it. The table shows
that the rules with negative results (Action = 0)
differ from the closest rules with positive results
(Action = 1) by just one condition.

Using this example, we can demonstrate how
our techniques can be used to answer the question
of the challenge organizers: if an applicant who
has got a negative result (“bad”), can the model
easily explain what should be changed to turn the
result to positive (“good”)? For this purpose, the
rule R? that gave the negative result needs to be
identified in the projection plot (the localisation
of rules is supported by highlighting) and the rules
with positive results having close positions in the
plot need to be selected, for example, as shown
in Fig. 12, left. The rule R® can be conveniently
compared with the other selected rules using the
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Fig. 10 Results of experimenting with the 10-classes classification model derived from the cardio dataset.
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Fig. 11 Results of experimenting with the 2-classes classification model derived from the HELOC dataset.
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Fig. 12 Similarity-based t-SNE projections of the original HELOC rules set (left) and the simplified versions obtained
with p = 0.85 (center) and with p = 0.75 (right). Blue dots correspond to rules predicting negative outcome and red to
rules with positive predictions.
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Fig. 13 A group of rules represented by closely positioned dots in the projection plot in Fig. 12, left (enclosed in a dark
grey rectangle) is shown in a table view.
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Fig. 14 The same rules as in Fig. 13 are represented by glyphs. The first rule (no. 41) is selected for comparison with the
others. One can see how the negative result may be turned to positive by changing the value of just one feature.

table display shown in Fig. 13 or a glyph represen-
tation, as in Fig. 14. In this figure, the rule no. 41
is selected as a reference for comparison. Its con-
ditions are represented by cyan-filled bars in all
glyphs. It is easy to see that a small increase of
the value of the third feature (Percent Installment
Trades) will make rule no. 271 with a positive out-
come applicable to this case instead of the rule
no. 41. Other possibilities are to make rule no. 241
applicable by increasing the value of the 7th fea-
ture (Net Fraction Installment Burden), or rule
no. 340 by increasing the value of the 8th feature
(Percent Trades Never Delinquent), or rule no. 254
by increasing the value of the second feature (Con-
solidated Version of Risk Markers), or rule no. 79
by decreasing the value of the 5th feature (Num-
ber Trades 60+ ever). In a similar way, one can
use more general rules of a simplified model ver-
sion, in which critical features like these can be
easier identified.

5.3 Material science, regression

This example is taken from the NOMAD 2018
Kaggle challenge to predict the formation energies
and bandgap energies of alloys from transpar-
ent conductors 3. In contrast to the previous
examples, this is a regression task.

In material science, a state-of-the-art predic-
tion method is RuleFit [7] which trains a rule
ensemble combined with a linear model. Note
that the winning methods of the Kaggle challenge
(n-gram [43], SOAG [44], MBTR [45]) do not sub-
stantially outperform RuleFit on the entirety of
the dataset ([46] have shown that they do, how-
ever, perform well on well-defined subsets of the
data). A prediction is obtained using a weighted
sum of rule outputs and feature values. We used
RuleFit to train a rule ensemble on the 402 data

instances using formation energy as target. The
resulting rule ensemble consists of 396 rules. Ana-
lyzing these rules, we find that most of them
describe single data instances which is not surpris-
ing given that the number of rules is nearly equal
to the number of data instances. This indicates
some potential for compression.

The target values range from 0 to 0.7676. We
have set the tolerance threshold e to 0.010,0.020
and 0.050, corresponding to the 2%, 5%, and 10%
percentiles of target values. The collected statis-
tics are presented in Fig. 15.

The second rows in all three tables demon-
strate that the largest part of the simplification is
achieved at the cost of decreasing the precision of
the predictions from specific numbers to intervals.
For example, a union rule predicts that the result
will be from 0.2179 to 0.2214 instead of predicting
a fixed number like 0.22. Hence, the chosen value
of the tolerance threshold € has the highest impact
on the resulting degree of simplification and gen-
eralization, whereas the impact of the roughness
threshold p is quite small: the decrease in the num-
ber of rules due to decreasing p from 1 to 0.6
ranges from only 6% for ¢ = 0.010 to 14% for
€ = 0.050, and the decrease in the number of con-
ditions ranges from 9% for e = 0.010 to 20% for
e = 0.050.

Nevertheless, the potential of our method for
simplifying the explanation of regression models
can be considered as high. It is quite reasonable
to posit that a user rarely needs an exact expla-
nation for each individual numeric value that can
be predicted by a model. Rather, the user can
be satisfied with a model description telling what
combinations of conditions lead to model results
fitting in different ranges of values (e.g., high
and low). The user-controlled value of e deter-
mines how narrow or wide these intervals will
be. Thus, by choosing a larger value, a user can

Shttps://www.kaggle.com/c/nomad2018-predict- transparent-conductors
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Fig. 15 Results of experimenting with the regression model derived from the material science dataset. The tables, from
top to bottom, correspond to € = 0.010, ¢ = 0.020, and € = 0.050, respectively.

obtain a compact description of model behavior
even without decreasing the coherence coefficient
of the rules. For example, the same material sci-
ence model generalized with e = 0.075 is described
by 80 rules with 494 conditions, and € = 0.25 gives
only 22 rules with 94 conditions in total and from
3 to maximum 6 conditions in each individual rule.
Like in the other cases, such combinations of con-
ditions, as well as the features they involve, can
be considered the most influential for the model
result.

This example suggests an interesting possi-
ble way of using the generalization method for
regression tasks. First, a high-level overview of
the behavior of a model is gained by obtaining a
very rough (large €) generalized representation of
it. Then, subsets of the original rules that have
been unified in the result of the generalization
are investigated in more detail by applying the
generalization method separately to these subsets.
For example, the t-SNE projection plot in Fig. 16
shows how the original rules of the material science
model were joined in a highly generalized version
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of the model. One group of 27 linked rules has
been selected and generalized with ¢ = 0.05 to 5
simple rules. The latter are shown in a table view,
where the first two columns represent the intervals
of the predicted values: r € [minQ, mazQ].

5.4 Experiments with pruned
models

In order to investigate the effect of pruning of
the original model on the compression that can
be achieved with our algorithm, we created deci-
sion trees with different level of cost complexity
pruning. In Fig. 17 pruning degree 1 denotes the
least compressed model and pruning degree 3
- most compressed model. An immediate obser-
vation that can be made is that the result of
our algorithm is highly dependent on the prun-
ing performed. Thus, the strongly pruned model
is highly resistant to generalization. This means
that our method can be useful also for practi-
tioners in order to understand if the model is
compact enough and does not contain redundan-
cies. Another interesting observation is that the
model 2 can be compressed only with significant
roughness: the models obtained with p = 0.90 and
p = 0.80 are identical, while the simplification
attempt with p = 1 fails (no union rules could be
produced). This is even more pronounced for the
strongest pruning.

It should be noted that each of these pruned
models has progressively declining accuracy when
trained, which showcases the difference of our
approach compared to pruning: while keeping a
required degree of coherence and fidelity to the
original model, our method gives a simplified
description without any effect on the accuracy of
the original model.

6 Discussion

We proposed an approach to facilitating compre-
hension of models that are interpretable by design,
but too large to be actually intelligible by a human
due to cognitive limitations. For this, we explain
the logic of a large (in principle) interpretable
model by a simplified descriptive model that suits
human cognitive properties: while averse to large
volumes of information, humans are good in deal-
ing with vague concepts, approximate statements,
and fuzzy reasoning. One can think of a data

mart* as an example of widely used descriptive
models in real world: instead of giving a human
full data from business, a special high level view
is formed in order to understand the processes
happening in it.

Our approach differs from the approaches
of regularization or compression techniques for
obtaining simpler yet accurate enough predictive
models, since our goal is not to retrain or improve
a model, but to explain it. That is, our aim is
to represent the logic of a complicated pseudo-
interpretable model at hand. This is independent
of whether the model was derived from data or is
an interpretable model mimicking the behavior of
some black-box model. A descriptive model is not
meant to be used as a substitute for the model
at hand (i.e., it is not used for making predic-
tions), but its purpose is to provide an explanation
for the global logic of that model. The cost of
high simplification is loss of predictive accuracy.
The more complex the global logic of a model,
the harder it is to generalize and represent it by
a simple descriptive model of sufficient fidelity.
Our algorithm for rule generalization allows users
to control how similar to the original model the
descriptive model must be in terms of predic-
tions. Besides, the possibility to see the exceptions
and the hierarchy of rule generalization allows
a human to increase the fidelity (and, hence,
the complexity) of the description as desired. In
addition to model description, our approach also
supports model exploration in terms of important
features, their impact on predictions, and which
feature combinations would create outliers.

Similar to a mimic model [2] there is a trade-off
between interpretability, i.e., size of the descrip-
tive model, and accuracy of the description, i.e.,
similarity of the descriptive model to the origi-
nal one. The goal typically is to have the most
concise descriptive model that is still sufficiently
similar. The similarity, however, is in general hard
to assess: A meaningful similarity measure not
only depends on the functional similarity, e.g.,
as measured by a suitable norm on the function
space, but also on the expected difference given
the data distribution. We use two measures as a
surrogate: fidelity to measure difference in pre-
dictions and the coherence coefficient to measure
structural similarity.

4 https://en.wikipedia.org/wiki/Data_mart
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Fig. 16 Left: Selection of original rules that contributed to a single generalized rule using a t-SNE projection of the original
rules set with lines showing links between rules. Right: A result of generalizing the selected subset consisting of 27 rules
with 223 conditions (from 6 to 11 conditions in one rule). With p = 1 and € = 0.05, the subset can be generalized to 5 rules

with 33 conditions; each rule has 6 or 7 conditions.
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Fig. 17 Results of experimenting with the pruned versions of the 3-classes classification model trained on the

cardiocartography dataset.

Fidelity is widely used in explainable AI [2]
and measures the number of data instances in
a reference dataset for which the predictions of
the original and descriptive differ by more than
e. Fidelity can be inaccurate for two reasons: (i)
using a reference dataset as an empirical sample
of the data distribution is only an approxima-
tion, and (ii) the difference of the two models on
those data samples where they do not agree is
unbounded.

We introduced the coherence coefficient to
measure the number of rules subsumed coherently
by a generalization in the description. Rules not
covered coherently are kept in the description as

exception rules so that no structural parts of the
original model are discarded. This guarantees that
for all data instances where at least one rule in
the original model is satisfied, at least one rule in
the descriptive model will be satisfied and their
predictions do not differ by more then e. There-
fore, the set of points for which at least one rule in
the descriptive model is satisfied is a superset of
the points for which at least one rule in the orig-
inal model is satisfied. This measure can still be
inaccurate on the points for which a rule in the
descriptive model is satisfied but no rule in the
original model is. For those points, the difference
in prediction is in general unbounded.
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For exploring the properties of the algorithm,
we created a visualization interface and performed
a series of experiments applying the rules general-
ization to four different models. Our case studies
showed that the human interaction for setting
the acceptable level of description roughness is
very helpful—while significant roughness makes
the result easier to comprehend, obtaining sev-
eral descriptive models with different degrees of
roughness can help to refine the understanding
of the predictions logic. Interesting enough, the
experiment with a regression model showcased
that in this case imprecision of predictions allows
to achieve higher simplification than rules rough-
ness control. Based on this observation, we pro-
pose a method for focused exploration of selected
parts of a regression model at hand: starting
from a very simple but very imprecise descriptive
model, a user selects one of the generalized rules,
extracts the subset of the original rules it cov-
ers, and obtains a more precise descriptive model
for this subset. In this way, the understanding
of the model logic can be gradually refined and
deepened.

We also found out that the distance metric we
introduced can be used for answering the predic-
tion justification questions, i.e., determining what
features should be changed and how to make a
model change its prediction. Knowing the rule by
which the current prediction was made, one uses
the distance metric to select the closest rules giv-
ing the desired outcome and inspects how their
conditions differ from the conditions of the rule
that was applied.

Our algorithm allows two variants of use (see
Sec. 3) and is open to further extensions. For
example, it can take into account possible over-
laps (partial coverage) between a generalized rule
and the original rules. Currently, the coherence
coefficient of a general rule is calculated only from
the rules fully covered by it. This definition can
be extended in an obvious way to including also
partial coverage by an appropriate change in the
computation of C'C.

An interesting direction for future work is to
combine generalization of the rules with merg-
ing and generalization of the features involved in
the rule conditions, which is expected to enable
much higher degrees of model logic simplifica-
tion. Examples of feature merging can be seen
in the award-winning solution of the HELOC

Challenge® [47], where 6 groups of semantically
related original features were integrated into com-
posite features thereby reducing the original 23
features to 10 features. Such feature merging
is usually hard to perform in the interpretable
manner without domain knowledge and human
reasoning. However, it may be possible to detect
automatically (by analyzing a rule set) which fea-
tures are likely to be related and propose groups
of such features to a human expert for considering
and controlling integration. This can significantly
strengthen the comprehensibility of a descriptive
model.
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