3.1. Transmission electron microscopy (TEM)
For investigation about the shape and sized of the prepared AgNP, its transmission electron micrograph was recorded (Fig. 2). As can be seen from Fig. 2, the prepared AgNP is spherical in shape. Estimation based on the micrograph showed that the average size of the prepared AgNP is 16.3 ± 3.6 nm. Solution of the synthesized AgNP is yellow in color and stable.
3.2. Optimization of medium
In order to explore about the best media, color changes of 1000 µL of AgNP in the presence BPA with concentration of 5.0 mg L− 1 was followed in acidic, neutral and alkaline solutions. The results have been shown in Fig. 3.
The results showed that disappearance of the color and difference between the blank and the sample is more pronounced in alkaline medium (sodium hydroxide with concentration of 0.01 mol L− 1).
3.3. Optimizing the order of addition of the reagents
According to Table 1, six different order for addition of five components were applied to find the best order in determination of BPA using AgNPs. According to the results seen in Fig. 4 and Table 1, the second order in terms of color change and the difference between absorbance of blank and sample was selected as optimal order for addition of the components in determination of BPA using AgNPs. Therefore, in the determination of BPA using AgNP, sodium hydroxide is added to the sample containing BPA followed by addition of AgNP.
Table 1
Different order of addition of the components.
No.
|
Order of addition of components
|
Absorbance change at 585 nm
|
1
|
BPA
|
AgNP
|
NaOH
|
0.298
|
2
|
BPA
|
NaOH
|
AgNP
|
0.786
|
3
|
NaOH
|
AgNP
|
BPA
|
0.424
|
4
|
AgNP
|
NaOH
|
BPA
|
0.149
|
5
|
NaOH
|
BPA
|
AgNP
|
0.191
|
6
|
AgNP
|
BPA
|
NaOH
|
0.203
|
3.4. Optimization of sodium hydroxide concentration
In this experiment, five different concentrations of sodium hydroxide were examined. Based on the results (Fig. 5), the optimal concentration of sodium hydroxide was 0.01 mol L− 1. With this concentration of sodium hydroxide, variation in the spectrum of the sample with respect to the blank and its color changes were higher. In the presence of high concentration of sodium hydroxide, the color of AgNP itself turns from bright yellow to brown and the mixture with BPA changes to a dusky green color.
3.5. Optimizing volume of silver nanoparticle
Effect of BPA on spectral variation and color changes of different volumes of AgNP was explored. The results have been shown in Fig. 6. It can be seen clearly that the higher the volume of AgNP, the greater the extent of color and spectral variation. Since there exist a limit for the total volume of the sample, as optimal volume of AgNP, 1000 µL was selected.
3.6. Griess reaction for determination of BPA
In Griess method for determination of BPA, a diazotization reaction is performed [23]. Here, instead of nitrite, BPA acts as analyte. Therefore, 2-nitroaniline and nitrite were used as the reagents.
Firstly, the order of the addition of the components were optimized. Different orders (Fig. 7) were examined and it was observed that addition of the mixture of hydrochloric acid, nitrite and 2-nitroaniline to the solution of BPA and vice versa, results in the highest color and absorbance variations.
In the next step, amount of the reagents were optimized. For this purpose, response surface methodology was employed [24]. In Table 2, designed experiment with three factors using central composite design has been shown (A, B and C are volume of hydrochloric acid, nitrite and 3-nitroaniline, respectively in µL). Correspondingly, response which is absorbance at 500 nm has been reported.
ANOVA results have been reported in Table 3 and Figs. 8 and 9. As can be seen in Table 3, hydrochloric acid (A) and nitrite (B) are significant factors at 95% significance level in the studied system with p values lower than 0.05. Among the second order interactions, the term B×B is important. Pareto chart shows these results, too (Fig. 8). Surface plots (Fig. 9) which show the variation of response with simultaneous variation of two factors indicate that in higher levels of nitrite (B), the response can be higher. In the same time, moderate amounts of hydrochloric acid are necessary to achieve favorite response.
Analysis of the experiment showed that the optimal volume of the reagents are 150, 690 and 16 µL of hydrochloric acid (0.1 mol L− 1), nitrite (0.6 mol L− 1) and 2-nitroaniline (0.072 mol L− 1), respectively.
Table 2 Designed experiment for optimization of the reaction between BPA, hydrochloric acid (A), nitrite (B) and 3-nitroaniline (C). the values for the factors are volume in µL.
Run
|
A
|
B
|
C
|
Absorbance at 500 nm
|
1
|
40
|
300
|
50
|
0.051
|
2
|
80
|
550
|
100
|
0.311
|
3
|
120
|
800
|
150
|
0.295
|
4
|
120
|
300
|
150
|
0.311
|
5
|
40
|
800
|
100
|
0.160
|
6
|
80
|
550
|
50
|
0.462
|
7
|
40
|
800
|
100
|
0.278
|
8
|
80
|
550
|
50
|
0.309
|
9
|
120
|
300
|
16
|
0.289
|
10
|
80
|
550
|
100
|
0.297
|
11
|
13
|
550
|
100
|
0.173
|
12
|
80
|
550
|
100
|
0.277
|
13
|
147
|
550
|
100
|
0.331
|
14
|
80
|
970
|
100
|
0.270
|
15
|
80
|
130
|
100
|
-0.100
|
16
|
80
|
550
|
100
|
0.250
|
17
|
40
|
300
|
150
|
0.112
|
18
|
80
|
550
|
184
|
0.241
|
19
|
120
|
800
|
50
|
0.373
|
20
|
80
|
550
|
100
|
0.307
|
Table 3. Results of ANOVA of the designed experiment reported in Table 2.
Term
|
Coefficient
|
t value
|
p value
|
Constant
|
0.3177
|
10.80
|
0.000
|
A
|
0.0684
|
3.51
|
0.006
|
B
|
0.0707
|
3.62
|
0.005
|
C
|
-0.0153
|
-0.78
|
0.451
|
A×A
|
-0.0154
|
-0.81
|
0.435
|
B×B
|
-0.0744
|
-3.92
|
0.003
|
C×C
|
-0.0095
|
-0.50
|
0.628
|
A×B
|
-0.0260
|
-1.02
|
0.332
|
A×C
|
0.0001
|
0.00
|
0.998
|
B×C
|
-0.0348
|
-1.37
|
0.201
|
3.7. Calibration
In order to find the relation between concentration of BPA and responses, different concentrations of BPA were examined in the presence of AgNP and in the Griess reaction in optimal conditions. Calibration curves can be seen in Fig. 10 and corresponding statistical results have been reported in Table 4.
For calibration, wavelengths 585 and 500 nm were chosen with AgNP and Griess method, respectively because the highest variations in absorbances were observed in these wavelengths. Correlation coefficient of the relations are close to unity which indicates that the calibration curve are linear. Moreover, high values of calculated F statistics for the calibrations confirm the linearity of the calibration.
Relatively a wide linear range was obtained in calibrations. With AgNP, calibration is more extended to lower concentrations. Comparison of slopes of the calibration curves shows that the method by AgNP is more sensitive.
Table 4
Statistical parameters of the calibrations using AgNP and Griess reaction.
|
Slope
|
Wavelength (nm)
|
Linear range (mg L− 1)
|
Intercept
|
DL
(mg L− 1)
|
R²
|
F
|
AgNPs
|
0.062(0.002)
|
585
|
1.0–16.0
|
0.187(0.018)
|
0.68
|
0.9849
|
650.6
|
Griess
|
0.0135(0.0006)
|
500
|
3.0–25.0
|
-0.041 (0.009)
|
0.65
|
0.9940
|
574.5
|
In Table 5, results of the analysis of bottled water have been collected. The analysis was performed in different times after filling the bottle. In order to evaluate the accuracy of the method, an amount of the standard BPA solution was added to the water samples and the spiked samples were analyzed.
Table 5
Results of the analysis of the real samples by proposed methods.
Method
|
Added (mg L− 1)
|
Found (mg L− 1)
|
Percent Relative Error
|
RSD%
|
AgNP
|
|
|
|
|
After 13 days
|
5.00
|
3.70
|
16.2%
|
2.7%
|
After 37 days
|
5.00
|
4.80
|
4.4%
|
10%
|
Griess method
|
|
|
|
|
After 13 days
|
14.00
|
13.45
|
-3.9%
|
0.2%
|
After 37 days
|
14.00
|
13.94
|
-0.4%
|
13.8%
|