The structural morphology of stents (e.g. expansion, lumen scaffolding, strut apposition, tissue protrusion, side branch jailing, strut fracture), and the local hemodynamic environment after stent deployment in coronary arteries are key determinants of procedural success and subsequent clinical outcomes. High-resolution intracoronary imaging has the potential to enable the geometrically correct 3D reconstruction of coronary stents. The aim of this work was to present a novel algorithm for 3D stent reconstruction of coronary artery stents by OCT and angiography, and test experimentally its accuracy, reproducibility, clinical feasibility and ability to perform CFD studies. Our method has the following steps: 3D lumen reconstruction by OCT and angiography, stent strut segmentation on OCT images, packaging, rotation and straightening of the segmented struts, and planar unrolling of the segmented struts, planar stent wireframe reconstruction, rolling back of the planar stent wireframe to the 3D reconstructed lumen, and stent volume reconstruction. We tested the accuracy and reproducibility of our method in stented patient-specific silicone models using micro computed tomography and stereoscopy as reference. The clinical feasibility and CFD studies were performed in clinically stented coronary bifurcations. Our experimental and clinical studies showed that our proposed algorithm can reproduce the complex stent configuration in space with high precision and reproducibility. Furthermore, our studies showed that the algorithm is feasible in clinical cases with stents deployed in diseased, bifurcated coronary arteries, enabling CFD studies to assess the hemodynamic environment. Notably, the high accuracy of our algorithm was consistent across different stent designs and diameters. Our method coupled with patient-specific CFD studies can facilitate stenting optimization, training in stenting techniques, and stent research and development.