1. Eakin, C.M., et al., Climate variability and change: monitoring data and evidence for increased coral bleaching stress, in Coral bleaching: patterns, processes, causes and consequences, M.J.H. van Oppen and J.M. Lough, Editors. 2018, Springer International Publishing: Cham. p. 51-84.
2. Heron, S.F., et al., Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Scientific Reports, 2016. 6: p. 38402.
3. Skirving, W.J., et al., The relentless march of mass coral bleaching: a global perspective of changing heat stress. Coral Reefs, 2019. 38(4): p. 547-557.
4. Oliver, E.C.J., et al., Longer and more frequent marine heatwaves over the past century. Nature Communications, 2018. 9(1): p. 1324.
5. Hoegh-Guldberg, O., et al., Coral Reef Ecosystems under Climate Change and Ocean Acidification. Frontiers in Marine Science, 2017. 4(158).
6. Donner, S.D., S.F. Heron, and W.J. Skirving, Future scenarios: a review of modelling efforts to predict the future of coral reefs in an era of climate change, in Coral bleaching: patterns, processes, causes and consequences, M.J.H. van Oppen and J.M. Lough, Editors. 2018, Springer International Publishing: Cham. p. 325-341.
7. Frölicher, T.L., E.M. Fischer, and N. Gruber, Marine heatwaves under global warming. Nature, 2018. 560(7718): p. 360-364.
8. Eakin, C.M., et al., Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS ONE, 2010. 5(11): p. e13969.
9. Hughes, T.P., et al., Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science, 2018. 359(6371): p. 80-83.
10. Hughes, T.P., et al., Global warming and recurrent mass bleaching of corals. Nature, 2017. 543(7645): p. 373-377.
11. Hoegh-Guldberg, O., Climate change, coral bleaching and the future of the world's coral reefs. Marine and Freshwater Research, 1999. 50(8): p. 839-866.
12. Blunden, J. and D.S. Arndt, State of the climate in 2017. Bulletin of the American Meteorological Society, 2018. 99(8): p. Si–S332.
13. Blunden, J. and D.S. Arndt, State of the Climate in 2019. Bulletin of the American Meteorological Society, 2020. 101(8): p. S1-S429.
14. Blunden, J. and D.S. Arndt, State of the Climate in 2018. Bulletin of the American Meteorological Society, 2019. 100(9): p. Si-S306.
15. Eakin, C., et al., Unprecedented three years of global coral bleaching 2014-17, in State of the climate in 2017, J. Blunden and D. Arndt, Editors. 2018. p. S74-S75.
16. Eakin, C.M., et al., Ding, dong, the witch is dead (?) – three years of global coral bleaching 2014-2017. Reef Encounter, 2017. 32(45): p. 33-38.
17. Wilkinson, C.R., Status of Coral Reefs of the World: 2000. 2000, Townsville, Australia: Australian Institute of Marine Science. 363.
18. Heron, S.F., et al., Impacts and effects of ocean warming on coral reefs, in Explaining ocean warming: causes, scale, effects and consequences, D. Laffoley and J.M. Baxter, Editors. 2016, International Union for Conservation of Nature: Gland, Switzerland. p. 177-197.
19. Raymundo, L.J., et al., Successive bleaching events cause mass coral mortality in Guam, Micronesia. Coral Reefs, 2019. 38(4): p. 677-700.
20. Burt, J.A., et al., Causes and consequences of the 2017 coral bleaching event in the southern Persian/Arabian Gulf. Coral Reefs, 2019. 38(4): p. 567-589.
21. GBRMPA, Reef Health update – 25 March 2022. 2022, Great Barrier Reef Marine Park Authority: Townsville, QLD, Australia.
22. Eakin, C.M., H.P.A. Sweatman, and R.E. Brainard, The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs, 2019. 38(4): p. 539-545.
23. Liu, G., et al., NOAA Coral Reef Watch (CRW) Daily Global 5-km (0.05 degree) Satellite Coral Bleaching Heat Stress Monitoring Product Suite v3.1. 2018, NOAA National Centers for Environmental Information, https://doi.org/10.25921/6jgr-pt28.
24. Skirving, W., et al., CoralTemp and the Coral Reef Watch Coral Bleaching Heat Stress Product Suite Version 3.1. Remote Sensing, 2020. 12(23).
25. Oliver, J.K., R. Berkelmans, and C.M. Eakin, Coral bleaching in space and time, in Coral bleaching: patterns, processes, causes and consequences, M.J.H. van Oppen and J.M. Lough, Editors. 2018, Springer International Publishing: Cham. p. 27-49.
26. Donner, S.D., G.J.M. Rickbeil, and S.F. Heron, A new, high-resolution global mass coral bleaching database. PLoS ONE, 2017. 12(4): p. e0175490.
27. Smith, K.M., et al., Impacts of consecutive bleaching events and local algal abundance on transplanted coral colonies in the Florida Keys. Coral Reefs, 2019. 38(4): p. 851-861.
28. Brainard, R.E., et al., Ecological impacts of the 2015/16 El Niño in the central equatorial Pacific. Bulletin of the American Meteorological Society, 2018. 99(1): p. S21-S26.
29. Vargas-Ángel, B., et al., El Niño-associated catastrophic coral mortality at Jarvis Island, central Equatorial Pacific. Coral Reefs, 2019. 38(4): p. 731-741.
30. Couch, C.S., et al., Mass coral bleaching due to unprecedented marine heatwave in Papahanaumokuakea Marine National Monument (Northwestern Hawaiian Islands). PLoS ONE, 2017. 12(9).
31. Maucieri, D.G. and J.K. Baum, Impacts of heat stress on soft corals, an overlooked and highly vulnerable component of coral reef ecosystems, at a central equatorial Pacific atoll. Biological Conservation, 2021. 262: p. 109328.
32. Claar, D., et al., Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nature Communications, 2020. 11: p. 6097.
33. Souter, D., et al., Status of Coral Reefs of the World: 2020, in Status of Coral Reefs of the World. 2021, Global Coral Reef Monitoring Network: Townsville MD, Queensland, Australia.
34. Skirving, W., et al., Remote Sensing of Coral Bleaching Using Temperature and Light: Progress towards an Operational Algorithm. Remote Sensing, 2018. 10(1): p. 18.
35. MacNeil, M.A., et al., Water quality mediates resilience on the Great Barrier Reef. Nature Ecology & Evolution, 2019.
36. Hughes, T.P., et al., Global warming transforms coral reef assemblages. Nature, 2018. 556(7702): p. 492-496.
37. Hughes, T.P., et al., Ecological memory modifies the cumulative impact of recurrent climate extremes. Nature Climate Change, 2019. 9(1): p. 40-43.
38. Evans, R., et al., Early recovery dynamics of turbid coral reefs after recurring bleaching events. Journal of Environmental Management, 2020. 268: p. 110666.
39. Pratchett, M.S., et al., Changes in Bleaching Susceptibility among Corals Subject to Ocean Warming and Recurrent Bleaching in Moorea, French Polynesia. PLoS ONE, 2013. 8(7): p. e70443.
40. Brodnicke, O.B., et al., Unravelling the links between heat stress, bleaching and disease: fate of tabular corals following a combined disease and bleaching event. Coral Reefs, 2019. 38(4): p. 591-603.
41. Muller, E.M., E. Bartels, and I.B. Baums, Bleaching causes loss of disease resistance within the threatened coral species Acropora cervicornis. eLife, 2018. 7: p. e35066.
42. Gardner, T.A., et al., Long-term region-wide declines in Caribbean corals. Science, 2003. 301: p. 958-960.
43. Wilkinson, C., Status of Coral Reefs of the World: 2000. 2000, Townsville: Australian Institute for Marine Science. 363.
44. Coffroth, M., H. Lasker, and J. Oliver, Coral mortality outside of the eastern Pacific during 1982-83: relationship to El Niño, in Global consequences of the 1982-83 El Nino-Southern Oscillation, P. Glynn, Editor. 1990, Elsevier: Amsterdam. p. 141-177.
45. Kramer, P., L. Roth, and J.C. Lang, Map of Coral Cover of Susceptible Coral Species to SCTLD. 2020, Atlantic and Gulf Rapid Reef Assessment, https://www.agrra.org/coral-disease-outbreak/.
46. Vega-Rodriguez, M., et al., Influence of water-temperature variability on stony coral diversity in Florida Keys patch reefs. Marine Ecology Progress Series, 2015. 528: p. 173-186.
47. Melo-Merino, S.M., et al., Functional divergence from ecological baselines on Caribbean coral reefs. Ecography. n/a(n/a): p. e05811.
48. McWilliam, M., et al., Deficits in functional trait diversity following recovery on coral reefs. Proceedings of the Royal Society B: Biological Sciences, 2020. 287(1918): p. 20192628.
49. Teixeira, C.D., et al., Sustained mass coral bleaching (2016–2017) in Brazilian turbid-zone reefs: taxonomic, cross-shelf and habitat-related trends. Coral Reefs, 2019. 38(4): p. 801-813.
50. Duarte, G.A.S., et al., Heat Waves Are a Major Threat to Turbid Coral Reefs in Brazil. Frontiers in Marine Science, 2020. 7(179).
51. Huang, B., et al., NOAA 0.25-degree Daily Optimum Interpolation Sea Surface Temperature (OISST), Version 2.1. 2020, NOAA National Centers for Environmental Information, https://doi.org/10.25921/RE9P-PT57.
52. Hughes, T.P., et al., Emergent properties in the responses of tropical corals to recurrent climate extremes. Current Biology, 2021.
53. Bairos-Novak, K.R., et al., Coral adaptation to climate change: Meta-analysis reveals high heritability across multiple traits. Global Change Biology, 2021. 27(22): p. 5694-5710.
54. Dixon, A.M., et al., Future loss of local-scale thermal refugia in coral reef ecosystems. PLOS Climate, 2022. 1(2): p. e0000004.
55. Woodhead, A., et al., Coral reef ecosystem services in the Anthropocene. 2019.
56. IPCC, Summary for Policymakers, in Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2022.
57. López, A.L., M.W. Chwastyk, and K.L. Berne, The Toll of War, in National Geographic Magazine. 2020. p. 70-75.