[1] Bhaumik, S., Tyrer, F., Barrett, M., Tin, N., McGrother, C. W., & Kiani, R. (2010). The relationship between carers’ report of autistic traits and clinical diagnoses of autism spectrum disorders in adults with intellectual disability. In Research in Developmental Disabilities, 31 (3), 705–712. doi:10.1016/j.ridd.2010.01.012
[2] Gold, C., Wigram, T., & Elefant, C. (2006). Music therapy for autistic spectrum disorder. In Cochrane Database of Systematic Reviews. DOI:10.1002/14651858.cd004381.pub2
[3] Center for Disease Control and Prevention (CDC). (2020). What is Autism Spectrum Disorder? Retrieved on 3 June 2020 from https://www.cdc.gov/ncbddd/autism/facts.html
[4] Bolton, P. F., Golding, J., Emond, A., & Steer, C. D. (2012). Autism Spectrum Disorder and Autistic Traits in the Avon Longitudinal Study of Parents and Children: Precursors and Early Signs. In Journal of the American Academy of Child & Adolescent Psychiatry, 51(3), 249–260.e25. doi:10.1016/j.jaac.2011.12.009
[5] Marlow, M., Servili, C. Tomlinson, M. (2019). A Review of Screening Tools for the Identification of Autism Spectrum Disorders and Developmental Delay in Infants and Young Children: Recommendations for Use in Low- and Middle-Income Countries. In Autism Research. DOI:10.1002/aur.2033
[6] Pinto-Martin, J. A., Souders, M. C., Giarelli, E., & Levy, S. E. (2005). The Role of Nurses in Screening for Autistic Spectrum Disorder in Pediatric Primary Care. In Journal of Pediatric Nursing, 20 (3), 163–169. doi:10.1016/j.pedn.2005.01.004
[7] Akay, M.F. (2009). Support vector machines combined with feature selection for breast cancer diagnosis. In Expert System Application, 36 (2). https://doi.org/10.1016/j.eswa.2008.01.009
[8] Thabtah, F. (2017). Autism Spectrum Disorder Screening: Machine Learning Adaptation and DSM-5 Fulfillment. In Proceedings of the 1st International Conference on Medical and Health Informatics 2017, pp.1-6. Taichung City, Taiwan, ACM. https://doi.org/10.1145/3107514.3107515
[9] Thabtah, F. (2019). An accessible and efficient autism screening method for behavioural data and predictive analyses. In Health Informatics Journal, 25(4), 1739–1755. Doi:10.1177/1460458218796636
[10] Ramotra, A.K., Mahajan, A., Kumar, R., Mansotra, V. (2020). Comparative Analysis of Data Mining Classification Techniques for Prediction of Heart Disease Using the Weka and SPSS Modeler Tools. In Smart Innovation, Systems and Technologies, 165, 89-97. DOI:10.1007/978-981-15-0077-0
[11] Kibis, E.Y., Büyüktahtakin, I.E., Dag, A. (2017). Data analytics approaches for breast cancer survivability: Comparison of data mining methods. In 67th Annual Conference and Expo of the Institute of Industrial Engineers, 591-596. https://search.proquest.com/docview/1951123056?accountid=14645
[12] Alaiad, A., Najadat, H., Mohsen, B., Balhaf, K. (2020). Classification and Association Rule Mining Technique for Predicting Chronic Kidney Disease. In Journal of Information and Knowledge Management. DOI: 10.1142/S0219649220400158
[13] Dawngliani, M.S., Chandrasekaran, N., Lalmawipuii, R., Thangkhanhau, H. (2020). Comparison of Decision Tree-Based Learning Algorithms Using Breast Cancer Data. In Lecture Notes on Data Engineering and Communications Technologies, 49, 885-896. DOI: 10.1007/978-3-030-43192-1_96
[14] Mun, N. L, and Jumadi, N. A. (2020). Statistical Evaluation on the Performance of Dyslexia Risk Screening System Based Fuzzy Logic and WEKA. In International Journal of Advanced Science and Technology, 29 (7), 638-649. http://sersc.org/journals/index.php/IJAST/article/view/9946/5413
[15] Raj, S., Masood, S. (2020) Analysis and Detection of Autism Spectrum Disorder Using Machine Learning Techniques. In Procedia Computer Science 167, 994–1004. DOI: 10.1016/j.procs.2020.03.399
[16] Lang, S., Bravo-Marquez, F., Beckham, C., Hall, M., Frank, E. (2019). WekaDeeplearning4j: A deep learning package for Weka based on Deeplearning4j. In Knowledge-Based Systems, 178, 48-50. https://doi.org/10.1016/j.knosys.2019.04.013
[17] Segal-Rozenhaimer, M., Li, A., Das, K., & Chirayath, V. (2020). Cloud detection algorithm for multi-modal satellite imagery using convolutional neural-networks (CNN). In Remote Sensing of Environment, 237. doi:10.1016/j.rse.2019.111446
[18] Panahi, M., Sadhasivam, N., Pourghasemi, H. R., Rezaie, F., Lee, S. (2020). Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR). In Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2020.125033
[19] Brown, M. L., Kros, J. F. (2003). Data mining and the impact of missing data. In Industrial Management & Data Systems, 103. 611-621. DOI: 10.1108/02635570310497657
[20] Shahzad, W., Rehman, Q., Ahmed, E. (2017). Missing Data Imputation using Genetic Algorithm for Supervised Learning. In International Journal of Advanced Computer Science and Applications, 8 (3), 438-445. DOI: 10.14569/IJACSA.2017.080360
[21] Hruschka, E. R., Hruschka Jr., E. R., Ebecken, N. F. F. (2005). Missing Values Imputation for a Clustering Genetic Algorithm. In Lecture Notes in Computer Science, 3612, 245-254. https://link.springer.com/chapter/10.1007/11539902_29
[22] Pampaka, M., Hutcheson, G.,Williams, J. (2016). Handling missing data: analysis of a challenging data set using multiple imputation. In International Journal of Research & Method in Education, 39 (1), 19–37. http://dx.doi.org/10.1080/1743727X.2014.979146
[23] Al-Askar,H., Radi, M. MacDermott, A. (2016). Chapter 7 - Recurrent Neural Networks in Medical Data Analysis and Classifications. In Emerging Topics in Computer Science and Applied Computing, Applied Computing in Medicine and Health, 147-165. https://doi.org/10.1016/B978-0-12-803468-2.00007-2
[24] Tsai, C., Chang, F. (2016). Combining instance selection for better missing value imputation. In The Journal of Systems and Software, 122, 63-71. http://dx.doi.org/10.1016/j.jss.2016.08.093
[25] Chen, S., Webb, G. I., Liua, L., Ma, X. (2020). A novel selective naïve Bayes algorithm. In Knowledge-Based Systems, 192. https://doi.org/10.1016/j.knosys.2019.105361
[26] van der Heide, E.M.M., Veerkamp, R.F., van Pelt, M.L., Kamphuis, C., Athanasiadis, I., Ducro, B. J. (2019). Comparing regression, naive Bayes, and random forest methods in the prediction of individual survival to second lactation in Holstein cattle. In Journal of Dairy Science, 102 (10), 9409-9421. https://doi.org/10.3168/jds.2019-16295
[27] Lewis, D.D. (1998) Naive (Bayes) at forty: The independence assumption in information retrieval. In: Nédellec C., Rouveirol C. (eds) Machine Learning: ECML-98. ECML 1998. In Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence), 1398. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0026666
[28] Ghazvini, K., Yousefi, M., Firoozeh, F., & Mansouri, S. (2019). Predictors of tuberculosis: Application of a logistic regression model. In Gene Reports. doi:10.1016/j.genrep.2019.100527
[29] Chen, L., Wang, C., Chen, J., Xiang, Z., Hu, X. (2020). Voice Disorder Identification by using Hilbert-Huang Transform (HHT) and K Nearest Neighbor (KNN). In Journal of Voice. https://doi.org/10.1016/j.jvoice.2020.03.009
[30] Madeti, S. R., Singh, S. N. (2018). Modeling of PV system based on experimental data for fault detection using kNN method. In Solar Energy, 173, 139-151. https://doi.org/10.1016/j.solener.2018.07.038
[31] Quinland, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo.
[32] Yiu, T. (2019). Understanding Random Forest: How the Algorithm Works and Why it Is So Effective. Retrieved on 4 June 2020 from https://towardsdatascience.com/understanding-random-forest-58381e0602d2
[33] Breiman, L., Cutler, A. (2004). Interface Workshop-April 2004. RFtools for Predicting and Understanding Data. https://www.stat.berkeley.edu/~breiman/RandomForests/interface04.pdf
[34] Rad, M. T., Viardin, A., Schmitz, G. J., Apel, M. (2020). Theory-training deep neural networks for an alloy solidification benchmark problem. In Computational Materials Science, 180. https://doi.org/10.1016/j.commatsci.2020.109687
[35] Ganapathy, S., Kulothungan, K., Muthurajkumar, S. (2013). Intelligent feature selection and classification techniques for intrusion detection in networks: a survey. In Journal of Wireless Computer Network, 271. https://doi.org/10.1186/1687-1499-2013-271
[36] Delehanty, A., Lee, J., Hooker, J. L., Cortese, J., & Woods, J. (2020). Exploring message framing to engage parents in early screening for autism spectrum disorder. In Patient Education and Counseling. doi:10.1016/j.pec.2020.06.024
[37] Jones, E. J. H., Gliga, T., Bedford, R., Charman, T., & Johnson, M. H. (2014). Developmental pathways to autism: A review of prospective studies of infants at risk. In Neuroscience & Biobehavioral Reviews, 39, 1–33. doi:10.1016/j.neubiorev.2013.12.001
[38] Thabtah, F. F. (2017). Autistic Spectrum Disorder Screening Data for Children Data Set. [Data File]. Retrieved from https://archive.ics.uci.edu/ml/datasets/Autism+Screening+Adult
Thabtah, F. (2018). An accessible and efficient autism screening method for behavioural data and predictive analyses. In Health Informatics Journal. doi:10.1177/1460458218796636
[39] Bennett, D. A. (2001). How can I deal with missing data in my study? In Australian and New Zealand Journal of Public Health, 25 (5), 464-469. https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1467-842X.2001.tb00294.x
[40] Patil, T. (2016). Systematic Mapping Study of Missing Values Techniques using Naive Bayes. In International Research Journal of Engineering and Technology (IRJET), 3 (3). https://www.irjet.net/archives/V3/i3/IRJET-V3I3385.pdf
[41] Kanchana, S., Thanamani, A.S. (2016). Elevating the Accuracy of Missing Data Imputation Using Bolzano Classifier. In International Journal of Engineering and Technology (IJET), 8 (1). http://www.enggjournals.com/ijet/docs/IJET16-08-01-028.pdf
[42] Aziz, A. S. A., Hanafi, S. E., Hassanien, A. E. (2017). Comparison of classification techniques applied for network intrusion detection and classification. In Journal of Applied Logic, 24, Part A, 109-118. https://doi.org/10.1016/j.jal.2016.11.018
[43] Radzi, S.F.M., Abidin, S.S.Z., Aziz, A. A., Damandhoori F.S. H., Singh, M.M. (2017). Breast Cancer Cells Predictions with Classification Algorithms, In Advanced Science Letter, 23 (5), 3817-5015. https://doi.org/10.1166/asl.2017.8316
[44] Jacini,F., Sorrentino, P., Lardone, A., Rucco, R., Baselice, F., Cavaliere,C., Aiello, M., Orsini, M., Iavarone,A., Manzo, V., Carotenuto, A., Granata, C., Hillebrand, A., Sorrentino, G.. (2018). Amnestic mild cognitive impairment is associated with frequency-specific brain network alterations in temporal poles. In Frontiers in Aging Neuroscience 10, 400. https://dx.doi.org/10.3389%2Ffnagi.2018.00400
[45] Liparoti M, Della Corte M, Rucco R. (2019). Gait abnormalities in minimally disabled people with Multiple Sclerosis: A 3D-motion analysis study. In Multiple Sclerosis and Related Disorders, 29, 100-107. doi:10.1016/j.msard.2019.01.028