1 O'Neil, J. Tackling a crisis for the health and wealth of naions. (World Health Organization, 2014).
2 Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42-51 (2015).
3 Peleg, A. Y., Seifert, H. & Paterson, D. L. Acinetobacter baumannii: emergence of a successful pathogen. Clini Microbial Rev. 21, 538-582 (2008).
4 Wong, D. et al. Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges. Clin Microbiol Rev 30, 409-447, doi:10.1128/CMR.00058-16 (2017).
5 McDonnell, G. & Russell, A. D. Antiseptics and disinfectants: activity, action, and resistance. Clini Microbial Rev. 12, 147-179 (1999).
6 Webber, M. A. et al. Parallel evolutionary pathways to antibiotic resistance selected by biocide exposure. J. Antimicrob. Chemother. 70, 2241-2248 (2015).
7 Fernández-Cuenca, F. et al. Reduced susceptibility to biocides in Acinetobacter baumannii: association with resistance to antimicrobials, epidemiological behaviour, biological cost and effect on the expression of genes encoding porins and efflux. J. Antimicrob. Chemother. 70, 3222-3229 (2015).
8 Alekshun, M. N. & Levy, S. B. The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol. 7, 410-413 (1999).
9 Rajamohan, G., Srinivasan, V. B. & Gebreyes, W. A. Novel role of Acinetobacter baumannii RND efflux transporters in mediating decreased susceptibility to biocides. J Antimicrob Chemother 65, 228-232 (2010).
10 Conceicão, T., Coelho, C., Lencastre, H. & Aires-de-Sousa, M. High prevalence of biocide resistance determinants in Staphylococcus aureus isolates from the three African countries. Antimicrob. Agents Chemother. 60, 678-681 (2015).
11 Liau, S. Y., Read, D. C., Pugh, W. J., Furr, J. R. & Russell, A. D. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett. Appl. Microbiol 25, 279-283 (1997).
12 Morones-Ramirez, J. R., Winkler, J. A., Spina, C. S. & Collins, J. J. Silver enhances antibiotic activity against Gram-negative bacteria. Sci Transl Med. 5, 190ra181 (2013).
13 Dibrov, P., Dzioba, J., Gosink, K. K. & Häse, C. C. Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae. Antimicrob Agents Chemother 46, 2668-2670 (2002).
14 Gupta, A., Matsui, K., Lo, J. F. & Silver, S. Molecular basis for resistance to silver cations in Salmonella. Nat. Med. 5, 183-188 (1999).
15 Franke, S., Grass, G. & Nies, D. H. The product of the ybdE gene of the Escherichia chromosome is involved in detoxification of silver ions. Microbiology 147, 965-972 (2001).
16 McMurry, L. M., Oethinger, M. & Levy, S. B. Triclosan targets lipid synthesis. Nature 394, 531-532 (1998).
17 Chen, Y., Pi, B., Zhou, H., Yu, Y. & Li, L. Triclosan resistance in clinical isolates of Acinetobacter baumannii. J. Med. Microbiol. 58, 1086-1091 (2009).
18 Hassan, K. A., Liu, Q., Henderson, P. J. F. & Paulsen, I. T. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. mBio 6, e01982-01914 (2015).
19 Langridge, G. C. et al. Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res. 19, 2308-2316 (2009).
20 Hassan, K. A. et al. Fluorescence-Based Flow Sorting in Parallel with Transposon Insertion Site Sequencing Identifies Multidrug Efflux Systems in Acinetobacter baumannii. mBio 7, e01200-01216 (2016).
21 Barquist, L. et al. The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries. Bioinformatics 32, 1109-1111, doi:10.1093/bioinformatics/btw022 (2016).
22 Hood, M. I., Becker, K. W., Roux, C. M., Dunman, P. M. & Skaar, E. P. genetic determinants of intrinsic colistin tolerance in Acinetobacter baumannii. Infect Immun 81, 542-551, doi:10.1128/IAI.00704-12 (2013).
23 Gallagher, L. A. et al. Resources for Genetic and Genomic Analysis of Emerging Pathogen Acinetobacter baumannii. J Bacteriol 197, 2027-2035, doi:10.1128/JB.00131-15 (2015).
24 Kenyon, J. J., Nigro, S. J. & Hall, R. M. Variation in the OC locus Acinetobacter baumannii genomes predicts extensive structural diversity in the lipoologosaccharide. PLoS ONE 9, e107833 (2014).
25 Arroyo, L. A. et al. The pmrCAB operon mediates polymyxin resistance in Acinetobacter baumannii ATCC 17978 and clinical isolates through phosphoethanolamine modification of lipid A. Antimicrob Agents Chemother 55, 3743-3751 (2011).
26 Boll, J. M. et al. Reinforcing Lipid A Acylation on the Cell Surface of Acinetobacter baumannii Promotes Cationic Antimicrobial Peptide Resistance and Desiccation Survival. mBio 6, e00478-00415 (2015).
27 Kenyon, J. J. & Hall, R. M. Variation in the complex carbohydrate biosynthesis loci of Acinetobacter baumannii genomes. PLoS ONE 8, e62160 (2013).
28 Lees-Miller, R. G. et al. A common pathway for O-linked protein-glycosylation and synthesis of capsule in Acinetobacter baumannii. Mol. Microbiol. 89, 816-830 (2013).
29 Geisinger, E. & Isberg, R. R. Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii. PLoS. Pathogens 11, e1004691 (2015).
30 Luke, N. R. et al. Identification and characterization of a glycosyltransferase involved in Acinetobacter baumannii lipopolysaccharide core biosynthesis. Infect. Immun. 78, 2017-2023 (2010).
31 Kenyon, J. J., Holt, K. E., Pickard, D., Dougan, G. & Hall, R. M. Insertions in the OCL1 locus of Acinetobacter baumannii lead to shortened lipooligosaccharides. Res Microbiol 165, 472-475 (2014).
32 Pakharukova, N. et al. Structural insight into archaic and alternative chaperone-usher pathways reveals a novel mechanism of pilus biogenesis. PLoS Pathog 11, e1005269 (2015).
33 Coyne, S., Courvalin, P. & Périchon, B. Efflux-mediated antibiotc resistance in Acinetobacter spp. Antimicrob. Agents Chemother. 55, 947-953 (2011).
34 Chapman-Smith, A. & Cronan, J. E. The enzymatic biotinylation of proteins: a post-translational modification of exceptional specificity. Trends Biochem. Sci. 24, 359-363 (1999).
35 Yoon, E. J., Courvalin, P. & Grillot-Courvalin, C. RND-type efflux pumps in multidrug-resistant clinical isolates of Acinetobacter baumannii: major role for AdeABC overexpression and AdeRS mutations. Antimicrob Agents Chemother 57, 2989-2995 (2013).
36 Hassan, K. A. et al. Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins. Proc Natl Acad Sci U S A 110, 20254-20259 (2013).
37 Yoon, E. J. et al. Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii. mBio 6, e00309-00315 (2015).
38 Leus, I. V. et al. Substrate Specificities and Efflux Efficiencies of RND Efflux Pumps of Acinetobacter baumannii. J Bacteriol 200, doi:10.1128/JB.00049-18 (2018).
39 Sugawara, E. & Nikaido, H. Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli. Antimicrob Agents Chemother 58, 7250-7257, doi:10.1128/AAC.03728-14 (2014).
40 Rosenfeld, N., Bouchier, C., Courvalin, P. & Périchon, B. Expression of the resistance-nodulation-cell division pump AdeIJK in Acinetobacter baumannii is regulated by AdeN, a TetR-type regulator. Antimicrob Agents Chemother 56, 2504-2510 (2012).
41 Rajamohan, G., Srinivasan, V. B. & Gebreyes, W. A. Molecular and functional characterization of a novel efflux pump, AmvA, mediating antimicrobial and disinfectant resistance in Acinetobacter baumannii. J. Antimicrob. Chemother. 65, 1919-1925 (2010).
42 Hassan, K. A. et al. Roles of DHA2 family transporters in drug resistance and iron homeostasis in Acinetobacter spp. J Mol Microbiol Biotechnol 20, 116-124 (2011).
43 Orth, P., Schnappinger, D., Hillen, W., Saenger, W. & Hinrichs, W. Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat Struct Biol 7, 215-219 (2000).
44 Li, L., Hassan, K. A., Brown, M. H. & Paulsen, I. T. Rapid multiplexed phenotypic screening identifies drug resistance functions for three novel efflux pumps in Acinetobacter baumannii. J. Antimicrob. Chemother. 71, 1223-1232 (2016).
45 Jung, W. K. et al. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74, 2171-2178 (2008).
46 Strahl, H. & Hamoen, L. W. Membrane potential is important for bacterial cell division. Proc Natl Acad Sci U S A 107, 12281-12286, doi:10.1073/pnas.1005485107 (2010).
47 Taber, H. W., Mueller, J. P., Miller, P. F. & Arrow, A. S. Bacterial uptake of aminoglycoside antibiotics. Microbiol Rev 51, 439-457 (1987).
48 Holtje, J. V. Induction of streptomycin uptake in resistant strains of Escherichia coli. Antimicrob Agents Chemother 15, 177-181, doi:10.1128/aac.15.2.177 (1979).
49 Nikaido, H. & Thanassi, D. G. Penetration of lipophilic agents with multiple protonation sites into bacterial cells: tetracyclines and fluoroquinolones as examples. Antimicrob Agents Chemother 37, 1393-1399, doi:10.1128/aac.37.7.1393 (1993).
50 Piddock, L. J. Mechanism of quinolone uptake into bacterial cells. J Antimicrob Chemother 27, 399-403, doi:10.1093/jac/27.4.399 (1991).
51 LaBreck, P. T. et al. Systematic Analysis of Efflux Pump-Mediated Antiseptic Resistance in Staphylococcus aureus Suggests a Need for Greater Antiseptic Stewardship. mSphere 5, doi:10.1128/mSphere.00959-19 (2020).
52 Wand, M. E., Bock, L. J., Bonney, L. C. & Sutton, J. M. Mechanisms of Increased Resistance to Chlorhexidine and Cross-Resistance to Colistin following Exposure of Klebsiella pneumoniae Clinical Isolates to Chlorhexidine. Antimicrob Agents Chemother 61, doi:10.1128/AAC.01162-16 (2017).
53 Oggioni, M. R. et al. Significant Differences Characterise the Correlation Coefficients between Biocide and Antibiotic Susceptibility Profiles in Staphylococcus aureus. Curr Pharm Des 21, 2054-2057, doi:10.2174/1381612821666150310103238 (2015).
54 Wales, A. D. & Davies, R. H. Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens. Antibiotics (Basel) 4, 567-604, doi:10.3390/antibiotics4040567 (2015).
55 Papkou, A., Hedge, J., Kapel, N., Young, B. & MacLean, R. C. Efflux pump activity potentiates the evolution of antibiotic resistance across S. aureus isolates. Nat Commun 11, 3970, doi:10.1038/s41467-020-17735-y (2020).
56 El Meouche, I. & Dunlop, M. J. Heterogeneity in efflux pump expression predisposes antibiotic-resistant cells to mutation. Science 362, 686-690, doi:10.1126/science.aar7981 (2018).
57 Fridman, O., Goldberg, A., Ronin, I., Shoresh, N. & Balaban, N. Q. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 513, 418-421, doi:10.1038/nature13469 (2014).
58 Van den Bergh, B. et al. Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence. Nat Microbiol 1, 16020, doi:10.1038/nmicrobiol.2016.20 (2016).
59 Baym, M. et al. Spatiotemporal microbial evolution on antibiotic landscapes. Science 353, 1147-1151, doi:10.1126/science.aag0822 (2016).
60 Levin-Reisman, I. et al. Antibiotic tolerance facilitates the evolution of resistance. Science 355, 826-830, doi:10.1126/science.aaj2191 (2017).
61 Kampf, G. Antibiotic ResistanceCan Be Enhanced in Gram-Positive Species by Some Biocidal Agents Used for Disinfection. Antibiotics (Basel) 8, doi:10.3390/antibiotics8010013 (2019).
62 Boinett, C. J. et al. Clinical and laboratory-induced colistin-resistance mechanisms in Acinetobacter baumannii. Microb Genom 5, doi:10.1099/mgen.0.000246 (2019).
63 Odermatt, A., Krapf, R. & Solioz, M. Induction of the putative copper ATPase, CopA and CopB, of Enterococcus hirae by Ag+ and Cu2+ extrusion by CopB. Biochem. Biophys. Res. Commun. 202, 44-48 (1994).
64 Maillard, J. Y. & Hartemann, P. Silver as an antimicrobial: facts and gaps in knowledge. Crit Rev Microbiol 39, 473-483 (2013).
65 Srinivasan, V. B., Rajamohan, G. & Gebreyes, W. A. Role of AbeS, a novel efflux pump of the SMR family of transporters, in resistance to antimicrobial agents in Acinetobacter baumannii. Antimicrob. Agents Chemother. 53, 5312-5316 (2009).
66 Rajamohan G, Srinivasan VB & Gebreyes, W. A. Novel role of Acinetobacter baumannii RND efflux transporters in mediating decreased susceptibility to biocides. J. Antimicrob. Chemother. 65, 228-232 (2010).
67 Ogase, H., Nagal, I., Kameda, K., Kume, S. & Ono, S. Identification and quantitative analysis of degradation products of chlorhexidine with chlorhexidine-resistant bacteria with three-dimensional high performance liquid chromatography. J. Appl. Bacteriol 73, 71-78 (1992).
68 Su, X. Z., Chen, J., Mizushima, T., Kuroda, T. & Tsuchiya, T. AbeM, an H+-coupled Acinetobacter baumannii multidrug efflux pump belonging to the MATE family of transporters. Antimicrob. Agents Chemother. 49, 4362-4364 (2005).
69 Zhu, L., Lin, J., Ma, J., Cronan, J. E. & Wang, H. Triclosan resistance of Pseudomonas aeruginosa PAO1 is due to FabV, a triclosan-resistant enoyl-acyl carrier protein reductase. Antimicrob. Agents Chemother. 54, 689-698 (2010).
70 Chesney, J. A., Eaton, J. W. & Mahoney, J. R. Bacterial glutathione: a sacrificial defense against chlorine compounds. J. Bacteriol 178, 2131-2135 (1996).
71 Fried, V. A. & Novick, A. Organic solvents as probes for the structure and function of the bacterial membrane: effects of ethanol on the wild type and an ethanol-resistant mutant of Escherichia coli K-12. J. Bacteriol 114, 239-248 (1973).