1. Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High-performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
2. Alrasheid, A. A., Babiker, M. Y., & Awad, T. A. (2021). Evaluation of certain medicinal plants compounds as new potential inhibitors of novel corona virus (COVID-19) using molecular docking analysis. In Silico Pharmacology, 9(10), 1–7. https://doi.org/10.1007/s40203-020-00073-8
3. Andersson, M. P., & Uvdal, P. (2005). New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis Set 6-311+G(d,p). Journal of Physical Chemistry A, 109, 2937–2941. https://doi.org/10.1021/jp045733a
4. Arouche, T. da S., Reis, A. F., Martins, A. Y., Costa, J. F. S., Carvalho Junior, R. N., & J. C. Neto, A. M. (2020). Interactions Between Remdesivir, Ribavirin, Favipiravir, Galidesivir, Hydroxychloroquine and Chloroquine with Fragment Molecular of the COVID-19 Main Protease with Inhibitor N3 Complex (PDB ID:6LU7) Using Molecular Docking. Journal of Nanoscience and Nanotechnology, 20(12), 7311–7323. https://doi.org/10.1166/jnn.2020.18955
5. Baranovich, T., Wong, S.-S., Armstrong, J., Marjuki, H., Webby, R. J., Webster, R. G., & Govorkova, E. A. (2013). T-705 (Favipiravir) Induces Lethal Mutagenesis in Influenza A H1N1 Viruses In Vitro. Journal of Virology, 87(7), 3741–3751. https://doi.org/10.1128/jvi.02346-12
6. Bayly, C. I., Cieplak, P., Cornell, W. D., & Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. Journal of Physical Chemistry, 97, 10269–10280. https://doi.org/10.1021/j100142a004
7. P. L. (2010). Filibuvir, a non-nucleoside NS5B polymerase inhibitor for the potential oral treatment of chronic HCV infection. IDrugs: The Investigational Drugs Journal, 13(12), 938–948.
8. Liang, W., Bockrath, M., Bozovic, D., Hafner, H. J., Tinkham, M. & Hongkun, P. Interferência de Perot em um guia de ondas de elétrons de nanotubos. Natureza 411, 665-669 (2001). https://doi.org/10.1038/35079517
9. Rajendra, J., Baxendale, M., Dit Rap, L. G., & Rodger, A. (2004). Flow Linear Dichroism to Probe Binding of Aromatic Molecules and DNA to Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 126(36), 11182–11188. doi:10.1021/ja048720j
10. Singh, R., Pantarotto, D., McCarthy, D., Chaloin, O., Hoebeke, J., Partidos, C. D., … Kostarelos, K. (2005). Binding and Condensation of Plasmid DNA onto Functionalized Carbon Nanotubes: Toward the Construction of Nanotube-Based Gene Delivery Vectors. Journal of the American Chemical Society, 127(12), 4388–4396. doi:10.1021/ja0441561
11. Li, Wenjin; Gräter, Frauke (2010). Atomistic Evidence of How Force Dynamically Regulates Thiol/Disulfide Exchange. Journal of the American Chemical Society, 132(47), 16790–16795. doi:10.1021/ja104763q
12. Berman, H., Henrick, K., & Nakamura, H. (2003). Announcing the worldwide Protein Data Bank. Nature Structural Biology, 10(12), 980. https://doi.org/10.1038/nsb1203-980
13. Bezerra, Fernanda W.F., do N. Bezerra, P., de Oliveira, M. S., da Costa, W. A., Ferreira, G. C., & de Carvalho Jr, R. N. (2020). Bioactive compounds and biological activity of Croton species (Euphorbiaceae): An overview. Current Bioactive Compounds, 16(4), 383–393. https://doi.org/10.2174/1573407215666181122103511
14. Bezerra, Fernanda W. F, Salazar, M. de L. A. R., Freitas, L. C., de Oliveira, M. S., dos Santos, I. R. C., Dias, M. N. C., … Carvalho Jr, R. N. de. (2020). Chemical composition, antioxidant activity, anti-inflammatory and neuroprotective effect of Croton matourensis Aubl. leaves extracts obtained by supercritical CO2. Journal of Supercritical Fluids, 165, 104992. https://doi.org/10.1016/j.supflu.2020.104992
15. Seager, R. J., Acevedo, A. J., Spill, F., & Zaman, M. H. (2018). Solid dissolution in a fluid solvent is characterized by the interplay of surface area-dependent diffusion and physical fragmentation. Scientific reports, 8(1), 1-17.
16. BIOVIA, D. S. (2020). BIOVIA Workbook, Release 2018, BIOVIA Pipeline Pilo. San Diego: Dassault Systèmes.
17. Bofill, J. M. (1995). A Conjugate Gradient Algorithm with a Trust Region for Molecular Geometry Optimization. Molecular Modeling Annual, 1(1), 11–17. https://doi.org/10.1007/s008940050002
18. Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., … Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
19. Cavalcanti, A. B., Zampieri, F. G., Rosa, R. G., Azevedo, L. C. P., Veiga, V. C., Avezum, A., … Berwanger, O. (2020). Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. New England Journal of Medicine, 383(21), 2041–2052. https://doi.org/10.1056/nejmoa2019014
20. Compagnone, R. S., Chavez, K., Mateu, E., Orsini, G., Arvelo, F., & Suárez, A. I. (2010). Composition and cytotoxic activity of essential oils from Croton matourensis and Croton micans from Venezuela. Records of Natural Products, 4(2), 101–108.
21. Sheth, A., Modi, M., Dawson, D., & Dominic, P. (2021). Prognostic value of cardiac biomarkers in COVID-19 infection. Scientific reports, 11(1), 1-9.
22. Cvetkovic, R. S., & Goa, K. L. (2003). Lopinavir/Ritonavir: A review of its use in the management of HIV infection. Drugs, 63(8), 769–802. https://doi.org/10.2165/11204950-000000000-00000
23. Damm, K. L., & Carlson, H. A. (2006). Gaussian-weighted RMSD superposition of proteins: A structural comparison for flexible proteins and predicted protein structures. Biophysical Journal, 90(12), 4558–4573. https://doi.org/10.1529/biophysj.105.066654
24. Das, U. N. (2021). Essential fatty acids and their metabolites in the pathobiology of (coronavirus disease 2019) COVID-19. Nutrition, 82, 111052. https://doi.org/10.1016/j.nut.2020.111052
25. Spector, Tami I.; Cheatham, Thomas E.; Kollman, Peter A. (1997). Unrestrained Molecular Dynamics of Photodamaged DNA in Aqueous Solution. Journal of the American Chemical Society, 119(30), 7095–7104. doi:10.1021/ja964372c
26. Dennington, R. D., Keith, T. A., & Millam, J. (2009). GaussView 6 reference. Gaussian, Inc.
27. Sun, M., Liu, S., Song, T., Chen, F., Zhang, J., Huang, J. A., Shuang W., Yao L., Honglin C., Weihong T., Yanling S., Yang, C. (2021). Spherical Neutralizing Aptamer Inhibits SARS-CoV-2 Infection and Suppresses Mutational Escape. Journal of the American Chemical Society, 143(51), 21541-21548.
28. Miller, L. M., Barnes, L. F., Raab, S. A., Draper, B. E., El-Baba, T. J., Lutomski, C. A., Robinson, C V., Clemmer D. E., Jarrold, M. F. (2021). Heterogeneity of Glycan Processing on Trimeric SARS-CoV-2 Spike Protein Revealed by Charge Detection Mass Spectrometry. Journal of the American Chemical Society, 143(10), 3959–3966. doi:10.1021/jacs.1c00353
29. Formisano, E., Di Maio, P., Ivaldi, C., Sferrazzo, E., Arieta, L., Bongiovanni, S., … Demontis, S. (2021). Nutritional therapy for patients with coronavirus disease 2019 (COVID-19): Practical protocol from a single center highly affected by an outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Nutrition, 82, 111048. https://doi.org/10.1016/j.nut.2020.111048
30. Frisch, M. J., G. W., T., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., … Fox, D. J. (2009). Gaussian 09, Revision E.01. Inc., Wallingford CT.
31. Fuhrmann, J., Rurainski, A., & Neumann., H. P. L. D. (2010). A New Lamarckian Genetic Algorithm for Flexible Ligand-Receptor Docking. Journal of Computational Chemistry, 31(9), 1911–1918. https://doi.org/10.1002/jcc
32. Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
33. Golub, G. H., & Ye, Q. (1999). Inexact preconditioned conjugate gradient method with inner-outer iteration. SIAM Journal of Scientific Computing, 21(4), 1305–1320. https://doi.org/10.1137/S1064827597323415
34. Gottlieb, O. R., Koketsu, M., Magalhães, M. T., Maia, J. G. S., Mendes, P. H., Rocha, A. I. da, … Wiiberg, V. C. (1981). Óleos essenciais da Amazônia VII. (1). Acta Amazônica, 11(1), 143–148.
35. Graef, E. R., Liew, J. W., Putman, M. S., Simard, J. F., Sirotich, E., Berenbaum, F., … Sparks, J. A. (2020). Festina lente: Hydroxychloroquine, COVID-19 and the role of the rheumatologist. Annals of the Rheumatic Diseases, 79(6), S734–S736. https://doi.org/10.1136/annrheumdis-2020-217480
36. Habibzadeh, P., & Stoneman, E. K. (2020). The novel coronavirus: A bird’s eye view. International Journal of Occupational and Environmental Medicine, 11(2), 65–71. https://doi.org/10.15171/ijoem.2020.1921
37. Hage-Melim, L. I. da S., Federico, L. B., de Oliveira, N. K. S., Francisco, V. C. C., Correia, L. C., de Lima, H. B., … da Silva, C. H. T. de P. (2020). Virtual screening, ADME/Tox predictions and the drug repurposing concept for future use of old drugs against the COVID-19. Life Sciences, 256(June), 117963. https://doi.org/10.1016/j.lfs.2020.117963
38. Aldeghi, Matteo; Heifetz, Alexander; Bodkin, Michael J.; Knapp, Stefan; Biggin, Philip C. (2017). Predictions of Ligand Selectivity from Absolute Binding Free Energy Calculations. Journal of the American Chemical Society, 139(2), 946–957. doi:10.1021/jacs.6b11467
39. Harvey, A. L., Edrada-Ebel, R., & Quinn, R. J. (2015). The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews Drug Discovery, 14, 111–129. https://doi.org/10.1038/nrd4510
40. Herlem, D., & Khuong-Huu, F. (1997). Chemistry of Larixol. II - Hemisynthesis of (-)-Borjatriol. Tetrahedron, 53(2), 673–680. https://doi.org/10.1016/S0040-4020(96)00999-4
41. Wall, Michael E.; Calabró, Gaetano; Bayly, Christopher I.; Mobley, David L; Warren, Gregory L. (2019). Biomolecular Solvation Structure Revealed by Molecular Dynamics Simulations. Journal of the American Chemical Society, jacs.8b13613–. doi:10.1021/jacs.8b13613
42. Schlick, T., Zhu, Q., Dey, A., Jain, S., Yan, S., & Laederach, A. (2021). To Knot or Not to Knot: Multiple Conformations of the SARS-CoV-2 Frameshifting RNA Element. Journal of the American Chemical Society, 143(30), 11404–11422. doi:10.1021/jacs.1c03003
43. Bottaro, S., Bussi, G., & Lindorff-Larsen, K. (2021). Conformational Ensembles of Noncoding Elements in the SARS-CoV-2 Genome from Molecular Dynamics Simulations. Journal of the American Chemical Society, 143(22), 8333–8343. doi:10.1021/jacs.1c01094
44. Jo, S., Kim, S., Shin, D. H., & Kim, M. S. (2020). Inhibition of SARS-CoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 145–151. https://doi.org/10.1080/14756366.2019.1690480
45. Kandula, V. R., Khanlou, H., & Farthing, C. (2005). Tipranavir: A novel second-generation nonpeptidic nonpeptidic protease inhibitor. Expert Review of Anti-Infective Therapy, 3(1), 9–21. https://doi.org/10.1586/14787210.3.1.9
46. Kim, D., & Fessler, J. A. (2016). Optimized first-order methods for smooth convex minimization. Mathematical Programming, 159, 81–107. https://doi.org/10.1007/s10107-015-0949-3
47. Kobayashi, J., & Murata, I. (2020). Nitric oxide inhalation as an interventional rescue therapy for COVID-19-induced acute respiratory distress syndrome. Annals of Intensive Care, 10(1), 9–10. https://doi.org/10.1186/s13613-020-00681-9
48. Kolafa, J., & Perram, J. W. (1992). Cutoff Errors in the Ewald Summation Formulae for Point Charge Systems. Molecular Simulation, 9(5), 351–368. https://doi.org/10.1080/08927029208049126
49. Kruse, H., Goerigk, L., & Grimme, S. (2012). Why the standard B3LYP/6-31G* model chemistry should not be used in DFT calculations of molecular thermochemistry: Understanding and correcting the problem. Journal of Organic Chemistry, 77, 10824–10834. https://doi.org/10.1021/jo302156p
50. Kumar, D., Kumari, K., Vishvakarma, V. K., Jayaraj, A., Kumar, D., Ramappa, V. K., Patel, R., Kumar, V., Dass, S. K., Chandra, R., Singh, P. (2021). Promising inhibitors of main protease of novel corona virus to prevent the spread of COVID-19 using docking and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 39(13), 4671–4685. https://doi.org/10.1080/07391102.2020.1779131
51. Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581, 215–220. https://doi.org/10.1038/s41586-020-2180-5
52. Leão, I. M. S., Andrade, C. H. S., Pinheiro, M. L. B., Da Rocha, A. F. I., Machado, I. L., Craveiro, A. A., Alencar J.W.,Matos, F. J. A. (1998). Essential oil of Croton lanjouwensis Jablonski from brazilian amazonian region. Journal of Essential Oil Research, 10, 643–644. https://doi.org/10.1080/10412905.1998.9700995
53. Machado, S. F., Camiletti, G. G., Neto, A. C., Jorge, F. E., & Jorge, R. S. (2009). Gaussian basis set of triple zeta valence quality for the atoms from K to Kr: Application in DFT and CCSD(T) calculations of molecular properties. Molecular Physics, 107(16), 1713–1727. https://doi.org/10.1080/00268970903042258
54. Žilinskas, J., Lančinskas, A., & Guarracino, M. R. (2021). Pooled testing with replication as a mass testing strategy for the COVID-19 pandemics. Scientific Reports, 11(1), 1-7.
55. Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
55. Maroli, N., Bhasuran, B., Natarajan, J., & Kolandaivel, P. (2020). The potential role of procyanidin as a therapeutic agent against SARS-CoV-2: a text mining, molecular docking and molecular dynamics simulation approach. Journal of Biomolecular Structure and Dynamics, 0(0), 1–16. https://doi.org/10.1080/07391102.2020.1823887
55. Martínez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS ONE, 10(3), 1–10. https://doi.org/10.1371/journal.pone.0119264
58. Meeran, M. F., Javed, H., Sharma, C., Goyal, S. N., Kumar, S., Jha, N. K., & Ojha, S. (2021). Can Echinacea be a potential candidate to target immunity, inflammation, and infection - The trinity of coronavirus disease 2019. Heliyon, 7, e05990. https://doi.org/10.1016/j.heliyon.2021.e05990
59. Mir, J. M., & Maurya, R. C. (2021). Nitric oxide as a therapeutic option for COVID-19 treatment: a concise perspective. New Journal of Chemistry, 45(4), 1774–1784. https://doi.org/10.1039/d0nj03823g
60. Mlynsky, V., Kuhrová, P., Zgarbová, M., Jurecka, P., Walter, N. G., Otyepka, M., Šponer, J., Banás, P. (2015). Reactive conformation of the active site in the hairpin ribozyme achieved by molecular dynamics simulations with ε/ ζ Force Field Reparametrizations. Journal of Physical Chemistry B, 119(11), 4220–4229. https://doi.org/10.1021/jp512069n
61. Nayeem, S. M., Sohail, E. M., Ridhima, G., & Reddy, M. S. (2021). Target SARS-CoV-2: computation of binding energies with drugs of dexamethasone/umifenovir by molecular dynamics using OPLS-AA force field. Research on Biomedical Engineering. https://doi.org/10.1007/s42600-020-00119-y
62. Needle, D., Lountos, G. T., & Waugh, D. S. (2015). Structures of the Middle East respiratory syndrome coronavirus 3C-like protease reveal insights into substrate specificity. Acta Crystallographica Section D: Biological Crystallography, 71, 1102–1111. https://doi.org/10.1107/S1399004715003521
63. Neto, A. F. G., Marques, F. C., Amador, A. T., Ferreira, A. D. S., & Neto, A. M. J. C. (2019). DFT and canonical ensemble investigations on the thermodynamic properties of Syngas and natural gas/Syngas mixtures. Renewable Energy, 130, 495–509. https://doi.org/10.1016/j.renene.2018.06.091
64. Netz, R. R., & Orland, H. (2000). Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions. European Physical Journal E, 1, 203–214. https://doi.org/10.1007/s101890050023
65. Noguti, T., & Go, N. (1983). A Method of Rapid Calculation of a Second Derivative Matrix of Conformational Energy for Large Molecules. Journal of the Physical Society of Japan. https://doi.org/10.1143/JPSJ.52.3685
66. Irshad, H., Oh, E. Y., Schmolze, D., Quintana, L. M., Collins, L., Tamimi, R. M., & Beck, A. H. (2017). Crowdsourcing scoring of immunohistochemistry images: Evaluating performance of the crowd and an automated computational method. Scientific reports, 7(1), 1-10.
67. Oldfield, V., & Plosker, G. L. (2006). Lopinavir/ritonavir: A review of its use in the management of HIV infection. Drugs, 66(9), 1275–1299. https://doi.org/10.2165/00003495-200666090-00012
68. Plana, J. L., Nadra, A. D., Estrin, D. A., Luque, F. J., & Capece, L. (2019). Thermal Stability of Globins: Implications of Flexibility and Heme Coordination Studied by Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 59, 441–452. https://doi.org/10.1021/acs.jcim.8b00840
69. Qi, R., Botello-Smith, W. M., & Luo, R. (2017). Acceleration of Linear Finite-Difference Poisson-Boltzmann Methods on Graphics Processing Units. Journal of Chemical Theory and Computation, 13, 3378–3387. https://doi.org/10.1021/acs.jctc.7b00336
70. Rabaan, A. A., Al-Ahmed, S. H., Haque, S., Sah, R., Tiwari, R., Malik, Y. S., Dhama, K., Yatoo, M.I., Bonilla-Aldana, D.,K., Rodriguez-Morales, A. J., Rodriguez-Morales, A. J. (2020). SARS-CoV-2, SARS-CoV, and MERS-CoV: a comparative overview. Le Infezioni in Medicina, 28(2), 174–184.
71. Ratha, S. K., Renuka, N., Rawat, I., & Bux, F. (2021). Prospective options of algae-derived nutraceuticals as supplements to combat COVID-19 and human coronavirus diseases. Nutrition, 83, 111089. https://doi.org/10.1016/j.nut.2020.111089
72. Rodriguez-Torres, M., Yoshida, E. M., Marcellin, P., Srinivasan, S., Purohit, V. S., Wang, C., & Hammond, J. L. (2014). A phase 2 study of filibuvir in combination with pegylated IFN alfa and ribavirin for chronic HCV. Annals of Hepatology, 13(4), 364–375. https://doi.org/10.1016/s1665-2681(19)30843-9
73. Schmith, V. D., Zhou, J., & Lohmer, L. R. L. (2020). The Approved Dose of. Ivermectin Alone is not the Ideal Dose for the Treatment of COVID-19. Clinical Pharmacology and Therapeutics, 108(4), 762–765. https://doi.org/10.1002/cpt.1889
74. Seyedi, S. S., Shukri, M., Hassandarvish, P., Oo, A., Shankar, E. M., Abubakar, S., & Zandi, K. (2016). Computational approach towards exploring potential anti-chikungunya activity of selected flavonoids. Scientific reports, 6(1), 1-8..
75. Trott, O., & Olson, A. J. (2012). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc
76. Artyukhin, A. B., Shestakov, A., Harper, J., Bakajin, O., Stroeve, P., & Noy, A. (2005). Functional One-Dimensional Lipid Bilayers on Carbon Nanotube Templates. Journal of the American Chemical Society, 127(20), 7538–7542. doi:10.1021/ja043431g
77. Vishvakarma, V. K., Singh, M. B., Jain, P., Kumari, K., & Singh, P. (2021). Hunting the main protease of SARS-CoV-2 by plitidepsin: Molecular docking and temperature-dependent molecular dynamics simulations. Amino Acids, (M). https://doi.org/10.1007/s00726-021-03098-1
78. Silva, H. V. Stuart, W. D. Duvic, C. R. Etterau, J. R. Ray, M. J. Ferguson, D. G. Albers, H. W. Smith, W. R. Harmony, J. A. A 70-k Da apolipoprotein designated ApoJ is a marker for subclasses of human plasma high density lipoproteins., Journal of Biological Chemistry, Vol. 265, Issue 22, 1990, Pages 13240-13247, ISSN 0021-9258, https://doi.org/10.1016/S0021-9258(19)3
79. Luttens, A., Gullberg, H., Abdurakhmanov, E., Vo, D. D., Akaberi, D., Talibov, V. O., Ylva G, Alexander J., Yoseph A, Anja S, Lindon W. K. M, Åke L, Martijn J. van Hemert, J N, Johan L, Jan K, K S, U. Helena D & Carlsson, J. (2022). Ultralarge Virtual Screening Identifies SARS-CoV-2 Main Protease Inhibitors with Broad-Spectrum Activity against Coronaviruses. Journal of the American Chemical Society, 144 (7), 2905-2920 DOI: 10.1021/jacs.1c08402
80. Bettinger, H. F., Kudin, K. N., & Scuseria, G. E. (2001). Thermochemistry of Fluorinated Single Wall Carbon Nanotubes. Journal of the American Chemical Society, 123(51), 12849–12856. doi:10.1021/ja010977j
81. Singh, R., Pantarotto, D., McCarthy, D., Chaloin, O., Hoebeke, J., Partidos, C. D., … Kostarelos, K. (2005). Binding and Condensation of Plasmid DNA onto Functionalized Carbon Nanotubes: Toward the Construction of Nanotube-Based Gene Delivery Vectors. Journal of the American Chemical Society, 127(12), 4388–4396. doi:10.1021/ja0441561
82. Sun, G., Kürti, J., Kertesz, M., & Baughman, R. H. (2002). Dimensional Changes as a Function of Charge Injection in Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 124(50), 15076–15080. doi:10.1021/ja020616j