Adler PB, Milchunas DG, Lauenroth WK, et al (2004) Functional traits of graminoids in semi-arid steppes: A test of grazing histories. J Appl Ecol 41:653–663. https://doi.org/10.1111/j.0021-8901.2004.00934.x
Araujo PI, Yahdjian L, Austin AT (2012) Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina? Oecologia 168:221–230. https://doi.org/10.1007/s00442-011-2063-4
Augustine DJ, McNaughton SJ (1998) Ungulate effects on the functional species composition of plant communities: herbivore selectivity and plant tolerance. J Wildl Manage 62:1165–1183. https://doi.org/10.2307/3801981
Austin AT, Méndez MS, Ballaré CL (2016) Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems. Proc Natl Acad Sci 113:201516157. https://doi.org/10.1073/pnas.1516157113
Bakker ES, Knops JMH, Milchunas DG, et al (2009) Cross-site comparison of herbivore impact on nitrogen availability in grasslands: The role of plant nitrogen concentration. Oikos 118:1613–1622. https://doi.org/10.1111/j.1600-0706.2009.17199.x
Bardgett RD, Wardle DA (2003) Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84:2258–2268. https://doi.org/10.1890/02-0274
Bisigato AJ, Bertiller MB (1997) Grazing effects on patchy dryland vegetation in northern Patagonia. J Arid Environ 36:639–653. https://doi.org/10.1006/jare.1996.0247
Bonanomi G, Cesarano G, Gaglione SA, et al (2017) Soil fertility promotes decomposition rate of nutrient poor, but not nutrient rich litter through nitrogen transfer. Plant Soil 412:397–411. https://doi.org/10.1007/s11104-016-3072-1
Bosco T, Bertiller MB, Carrera AL (2016) Combined effects of litter features, UV radiation, and soil water on litter decomposition in denuded areas of the arid Patagonian Monte. Plant Soil 406:71–82. https://doi.org/10.1007/s11104-016-2864-7
Carrera AL, Bertiller MB, Larreguy C (2008) Leaf litterfall, fine-root production, and decomposition in shrublands with different canopy structure induced by grazing in the Patagonian Monte, Argentina. Plant Soil 311:39–50. https://doi.org/10.1007/s11104-008-9655-8
Cesa A, Paruelo JM (2011) Changes in vegetation structure induced by domestic grazing in Patagonia (Southern Argentina). J Arid Environ 75:1129–1135. https://doi.org/10.1016/j.jaridenv.2011.04.003
Cingolani AM, Posse G, Collantes MB (2005) Plant functional traits, herbivore selectivity and response to sheep grazing in Patagonian steppe grasslands. J Appl Ecol 42:50–59. https://doi.org/10.1111/j.1365-2664.2004.00978.x
Cipriotti PA, Aguiar MR (2005) Effects of grazing on patch structure in a semi-arid two-phase vegetation mosaic. J Veg Sci 16:57–66. https://doi.org/10.1111/j.1654-1103.2005.tb02338.x
Cipriotti PA, Aguiar MR (2010) Resource partitioning and interactions enable coexistence in a grass-shrub steppe. J Arid Environ 74:1111–1120. https://doi.org/10.1016/j.jaridenv.2010.05.006
Cipriotti PA, Aguiar MR (2012) Direct and indirect effects of grazing constrain shrub encroachment in semi-arid Patagonian steppes. Appl Veg Sci 15:35–47. https://doi.org/10.1111/j.1654-109X.2011.01138.x
Cipriotti PA, Aguiar MR, Wiegand T, Paruelo JM (2019) Combined effects of grazing management and climate on semi‐arid steppes: Hysteresis dynamics prevent recovery of degraded rangelands. J Appl Ecol 56:2155–2165. https://doi.org/10.1111/1365-2664.13471
Coley PD, Bryant JP, Chapin FS (1985) Resource Availability and Plant Antiherbivore Defense. Science (80- ) 230:895–899. https://doi.org/10.1017/CBO9781107415324.004
Díaz S, Lavorel S, McIntyre S, et al (2007) Plant trait responses to grazing - A global synthesis. Glob Chang Biol 13:313–341. https://doi.org/10.1111/j.1365-2486.2006.01288.x
du Toit JT, Olff H (2014) Generalities in grazing and browsing ecology: Using across-guild comparisons to control contingencies. Oecologia 174:1075–1083. https://doi.org/10.1007/s00442-013-2864-8
Eldridge DJ, Poore AGB, Ruiz-Colmenero M, et al (2016) Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecol Appl 26:1273–1283. https://doi.org/10.1890/15-1234
Flombaum P, Sala OE (2007) A non-destructive and rapid method to estimate biomass and aboveground net primary production in arid environments. J Arid Environ 69:352–358. https://doi.org/10.1016/j.jaridenv.2006.09.008
Flombaum P, Sala OE (2008) Higher effect of plant species diversity on productivity in natural than artificial ecosystems
Frank DA, Wallen RL, Hamilton EW, et al (2018) Manipulating the system: How large herbivores control bottom-up regulation of grasslands. J Ecol 106:434–443. https://doi.org/10.1111/1365-2745.12884
Giese M, Brueck H, Gao YZ, et al (2013) N balance and cycling of Inner Mongolia typical steppe: A comprehensive case study of grazing effects. Ecol Monogr 83:195–219. https://doi.org/10.1890/12-0114.1
Giese M, Gao YZ, Zhao Y, et al (2009) Effects of grazing and rainfall variability on root and shoot decomposition in a semi-arid grassland. Appl Soil Ecol 41:8–18. https://doi.org/10.1016/j.apsoil.2008.08.002
Golluscio RA, Austin AT, García Martínez GC, et al (2009) Sheep grazing decreases organic carbon and nitrogen pools in the patagonian steppe: Combination of direct and indirect effects. Ecosystems 12:686–697. https://doi.org/10.1007/s10021-009-9252-6
Hunter MD, Price PW (1992) Playing Chutes and Ladders : Heterogeneity and the Relative Roles of Bottom-Up and Top- Down Forces in Natural Communities. Ecology 73:724–732. https://doi.org/10.2307/1940152
INTA (2020) Estación Agrometeorológica EEA INTA Río Mayo. In: Sist. Inf. Patagon. Sur. Inst. Nac. Tecnol. Agropecu. http://sipas.inta.gob.ar/?q=agrometeorologia-detalle-estacion&idEstacion=19.
Kéfi S, Rietkerk M, Alados CL, et al (2007) Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449:213–217. https://doi.org/10.1038/nature06111
Manzoni S, Jackson RB, Trofymow JA, Porporato A (2008) The global stoichiometry of litter nitrogen mineralization. Science (80- ) 321:684–686. https://doi.org/10.1126/science.1159792
Milchunas DG, Lauenroth WK (1993) Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol Monogr 63:327–366. https://doi.org/10.2307/2937150
Niu K, He J-S, Lechowicz MJ (2016) Grazing-induced shifts in community functional composition and soil nutrient availability in Tibetan alpine meadows. J Appl Ecol 53:1554–1564. https://doi.org/10.1111/1365-2664.12727
Oñatibia GR, Aguiar MR, Semmartin M (2015) Are there any trade-offs between forage provision and the ecosystem service of C and N storage in arid rangelands? Ecol Eng 77:26–32. https://doi.org/10.1016/j.ecoleng.2015.01.009
Oñatibia GR, Aguiar MR (2016) Continuous moderate grazing management promotes biomass production in Patagonian arid rangelands. J Arid Environ 125:73–79. https://doi.org/10.1016/j.jaridenv.2015.10.005
Oñatibia GR, Aguiar MR (2019) Grasses and grazers in arid rangelands: Impact of sheep management on forage and non-forage grass populations. J Environ Manage 235:42–50. https://doi.org/10.1016/j.jenvman.2019.01.037
Oñatibia GR, Amengual G, Boyero L, Aguiar MR (2020) Aridity exacerbates grazing‐induced rangeland degradation: A population approach for dominant grasses. J Appl Ecol 57:1999–2009. https://doi.org/10.1111/1365-2664.13704
Parton W, Silver WL, Burke IC, et al (2007) Global-Scale Similarities in Nitrogen Release Patterns During Long-Term Decomposition. Science (80- ) 315:361–364. https://doi.org/10.1126/science.1134853
Paruelo JM, Pütz S, Weber G, et al (2008) Long-term dynamics of a semiarid grass steppe under stochastic climate and different grazing regimes: A simulation analysis. J Arid Environ 72:2211–2231. https://doi.org/10.1016/j.jaridenv.2008.07.010
Pastor J, Cohen Y, Hobbs NT (2006) The roles of large herbivores in ecosystem nutrient cycles, in: In: Danell K, Bergström R, Duncan P, Pastor J (eds) Large herbivore ecology, ecosystem dynamics and conservation. Cambridge University Press., New York, pp 289–325
Peco B, Navarro E, Carmona CP, et al (2017) Effects of grazing abandonment on soil multifunctionality: The role of plant functional traits. Agric Ecosyst Environ 249:215–225. https://doi.org/10.1016/j.agee.2017.08.013
Penner JF, Frank DA (2019) Litter Decomposition in Yellowstone Grasslands: The Roles of Large Herbivores, Litter Quality, and Climate. Ecosystems 22:929–937. https://doi.org/10.1007/s10021-018-0310-9
Pinheiro JC, Bates D (2000) Mixed-effects models in S and S-PLUS. Springer, New York
Pinheiro JC, Bates DM, DebRoy S, et al (2018) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-137.
Porensky LM, Mueller KE, Augustine DJ, Derner JD (2016) Thresholds and gradients in a semi-arid grassland: long-term grazing treatments induce slow, continuous and reversible vegetation change. J Appl Ecol 53:1013–1022. https://doi.org/10.1111/1365-2664.12630
Porensky LM, Derner JD, Augustine DJ, Milchunas DG (2017) Plant Community Composition after 75 Yr of Sustained Grazing Intensity Treatments in Shortgrass Steppe. Rangel Ecol Manag 70:456–464. https://doi.org/10.1016/j.rama.2016.12.001
R Core Team (2018) R: A language and environment for statistical computing.
Reichmann LG, Sala OE, Peters DPC (2013) Water controls on nitrogen transformations and stocks in an arid ecosystem. Ecosphere 4:1–17. https://doi.org/10.1890/ES12-00263.1
Robertson GP, Coleman DC, Bledsoe CS, Sollins P (1999) Standard soil methods for long-term ecological research. Oxford University Press, New York
Schrama M, Veen GFC, Bakker ESL, et al (2013) An integrated perspective to explain nitrogen mineralization in grazed ecosystems. Perspect Plant Ecol Evol Syst 15:32–44. https://doi.org/10.1016/j.ppees.2012.12.001
Semmartin M, Aguiar MR, Distel RA, et al (2004) Litter quality and nutrient cycling affected by grazing-induced species replacements along a precipitation gradient. Oikos 107:148–160. https://doi.org/10.1111/j.0030-1299.2004.13153.x
Shariff AR, Biondini ME, Grygiel CE (1994) Grazing intensity effects on litter decomposition and soil nitrogen mineralization. J Range Manag 47:444–449. https://doi.org/10.2307/4002994
Sun Y, He XZ, Hou F, et al (2018) Grazing increases litter decomposition rate but decreases nitrogen release rate in an alpine meadow. Biogeosciences 15:4233–4243. https://doi.org/10.5194/bg-15-4233-2018
Throop HL, Belnap J (2019) Connectivity dynamics in dryland litter cycles: Moving decomposition beyond spatial stasis. Bioscience 69:602–614. https://doi.org/10.1093/biosci/biz061
Vesk PA, Westoby M (2001) Predicting plant species’ responses to grazing. J Appl Ecol 38:897–909. https://doi.org/10.1046/j.1365-2664.2001.00646.x
Wang Y, Gong JR, Liu M, et al (2015) Effects of land use and precipitation on above- and below-ground litter decomposition in a semi-arid temperate steppe in Inner Mongolia, China. Appl Soil Ecol 96:183–191. https://doi.org/10.1016/j.apsoil.2015.07.010
Wang Y, Wesche K (2016) Vegetation and soil responses to livestock grazing in Central Asian grasslands: a review of Chinese literature. Biodivers Conserv 25:2401–2420. https://doi.org/10.1007/s10531-015-1034-1
Wang Z, Yuan X, Wang D, et al (2018) Large herbivores influence plant litter decomposition by altering soil properties and plant quality in a meadow steppe. Sci Rep 8:9089. https://doi.org/10.1038/s41598-018-26835-1
Wardle DA, Bardgett RD, Klironomos JN, et al (2004) Ecological Linkages Between Aboveground and Belowground Biota. Science (80- ) 304:1629–1633. https://doi.org/10.1126/science.1094875
Wigley BJ, Augustine DJ, Coetsee C, et al (2020) Grasses continue to trump trees at soil carbon sequestration following herbivore exclusion in a semiarid African savanna. Ecology 101:. https://doi.org/10.1002/ecy.3008
Yahdjian L, Sala OE, Austin AT (2006) Differential controls of water input on litter decomposition and nitrogen dynamics in the patagonian steppe. Ecosystems 9:128–141. https://doi.org/10.1007/s10021-004-0118-7
Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, et al (2015) The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecol. Monogr. 85:133–155
Zhou G, Zhou X, He Y, et al (2017) Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis. Glob Chang Biol 23:1167–1179. https://doi.org/10.1111/gcb.13431