[1] Kang YJ, Kim SK, Kim MY, Lestari P, Kim KH, Ha BK, Jun TH, Hwang WJ, Lee T, Lee J, Shim S, Yoon MY, Jang YE, Han KS, Taeprayoon P, Yoon N, Somta P, Tanya P, Kim KS, Gwag JG, Moon JK, Lee YH, Park BS, Bombarely A, Doyle JJ, Jackson SA, Schafleitner R, Srinives P, Varshney RK, Lee SH (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun 5:5443.
[2] Kim SK, Nair RM, Lee J, Lee SH (2015) Genomic resources in mungbean for future breeding programs. Front Plant Sci 6:6626.
[3] Yaqub M, Mahmood T, Akhtar M,Iqbal MM, Ali S (2010) Induction of mungbean [Vignaradiata (L.) Wilczek] as a grain legume in the annual rice-wheat double cropping system. Pak J Bot 42(5):3125–3135.
[4] De Faria SM, Lewis GP, Sprent JI, Sutherland JM (1989) Occurrence of nodulation in the Leguminosae. New Phytol 111:607–619.
[5] Lv Y, Liu Y, Zhao H (2016) mInDel: a high-throughput and efficient pipeline for genome-wide InDel marker development. BMC Genomics 17(1):290.
[6] Lu N, Zhang M, Xiao Y, Han D, Liu Y, Zhang Y, Yi F, Zhu T, Ma W, Fan E, Qu G, Wang J (2019) Construction of a high-density genetic map and QTL mapping of leaf traits and plant growth in an interspecific F1 population of Catalpa bungei × Catalpa duclouxii Dode. BMC Plant Biol 19 (1):596.
[7] Yonemaru JI, Choi SH, Sakai H, Ando T, Shomura A, Yano M, Wu J, Fukuoka S (2015) Genome-wide indel markers shared by diverse Asian rice cultivars compared to Japanese rice cultivar ‘Koshihikari’. Breed Sci 65 (3):249–256.
[8] Raman H, Raman R, Wood R, Martin P (2006) Repetitive indel markers within the ALMT1 gene conditioning aluminium tolerance in wheat (Triticum aestivum L.). Mol Breeding 18(2):171–183.
[9] Das S, Upadhyaya HD, Srivastava R, Bajaj D, Gowda CL, Sharma S, Singh S, Tyagi AK, Parida SK (2015) Genome-wide insertion–deletion (InDel) marker discovery and genotyping for genomics-assisted breeding applications in chickpea. DNA Res 22(5):377–386.
[10] Mei L, Cheng XZ, Wang SH, Wang LX, Liu CY, Sun L, Xu N, Humphry M E, Lambrides CJ, Li HB, Liu CJ (2009) Relationship between bruchid resistance and seed mass in mungbean based on QTL analysis. Genome 52(7):589–596.
[11] Wang LX, Wu CS, Zhong M, Zhao D, Mei L, Chen HL, Wang SH, Liu CJ, Cheng XZ (2016) Construction of an integrated map and location of a bruchid resistance gene in mung bean. Crop J 4(5):360–366.
[12] Chaitieng B, Kaga A, Han OK, Wang XW, Wongkaew S, Laosuwan P, Tomooka N, Vaughan DA (2002) Mapping a new source of resistance to powdery mildew in mungbean. Plant Breed 121(6):521–525.
[13] Poolsawat O, Kativat C, Arsakit K, Tantasawat PA (2017) Identification of quantitative trait loci associated with powdery mildew resistance in mungbean using ISSR and ISSR-RGA markers. Mol Breed 37(12):150.
[14] Chen HM, Ku HM, Schafleitner R, Bains TS, Kuo CG, Liu CA, Nair RM (2013) The major quantitative trait locus for mungbean yellow mosaic Indian virus resistance is tightly linked in repulsion phase to the major bruchid resistance locus in a cross between mungbean [Vigna radiata (L.) Wilczek] and its wild relative Vigna radiata ssp. sublobata. Euphytica 192(2):205–216.
[15] Sai BC, Nagarajan P, Raveendran M, Rabindran R, Bapu JRK, Senthil N (2017) Understanding the inheritance of mungbean yellow mosaic virus (MYMV) resistance in mungbean (Vigna radiata L. Wilczek). Mol Breed 37(5):63.
[16] Chankaew S, Somta P, Sorajjapinun W (2011) Quantitative trait loci mapping of Cercospora leaf spot resistance in mungbean, Vigna radiata (L.) Wilczek. Mol Breed 28(2):255–264.
[17] Jaakola L (2013) New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci 18(9):477–483.
[18] Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C (2006) A small family of MYB-gegulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18(4):831–851.
[19] Wang F, Xu Z, Fan X, Zhou Q, Cao J, Ji G, Jing S, Feng B, Wang T (2019) Transcriptome analysis reveals complex molecular mechanisms underlying UV tolerance of wheat (Triticum aestivum, L.). J Agric Food Chem 67(2):563–577.
[20] Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids-biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14(7):14950–14973.
[21] Wang Z, Cui Y, Vainstein A, Chen S, Ma H (2017) Regulation of fig (Ficuscarica L.) fruit color: metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway. Front Plant Sci 8:1990.
[22] Chen W, Gong L, Guo Z, Wang W, Zhang H, Liu X, Yu S, Xiong L, Luo J (2013) A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol Plant 6(6):1769–1780.
[23] Zhuang H, Lou Q, Liu H, Han H, Wang Q, Tang Z, Ma Y, Wang H (2019) Differential regulation of anthocyanins in green and purple turnips revealed by combined de novo transcriptome and metabolome analysis. Int J Mol Sci 20(18):4387.
[24] Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760.
[25] Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interface. Nucleic Acids Res 40(15):e115.
[26] Meng L, Li HH, Zhang LY, Wang JK (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283.
[27] Li H, Ribaut JM, Li Z, Wang J (2008) Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet 116(2):243–260.
[28] McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T (1997) Report on QTL nomenclature. Rice Genet Newsl 14(11):11–13.
[29] Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408.
[30] Wang LX, Elbaidouri M, Abernathy B, Chen HL, Wang SH, Lee SH, Jackson SA, Cheng XZ (2015) Distribution and analysis of SSR in mung bean (Vigna radiata L.) genome based on an SSR-enriched library. Mol Breed 35(1):1–10.
[31] Chen H, Wang L, Wang S, Liu C, Blair MW, Cheng X (2015) Transcriptome sequencing of mung bean (Vigna radiate L.) genes and the identification of EST-SSR markers. PLoS One 10(4):e0120273.
[32] Liu C, Fan B, Cao Z, Su Q, Wang Y, Zhang Z, Wu J, Tian J (2016) A deep sequencing analysis of transcriptomes and the development of EST-SSR markers in mungbean (Vigna radiata). J Genet 95(3):527–535.
[33] Isemura T, Kaga A, Tabata S, Somta P, Srinives P, Shimizu T, Jo U, Vaughan DA, Tomooka N (2012) Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). PLoS One 7(8):e41304.
[34] Kajonphol T, Sangsiri C, Somta P, Toojinda T, Srinives P (2012) SSR map construction and quantitative trait loci (QTL) identification of major agronomic traits in mungbean (Vigna radiata (L.) Wilczek), SABRAO J Breed Genet 44(1):71–86.
[35] Sompong U, Somta P, Raboy V, Srinives P (2012) Mapping of quantitative trait loci for phytic acid and phosphorus contents in seed and seedling of mungbean (Vigna radiata (L.) Wilczek). Breed Sci 62(1): 87–92.
[36] Wang Q, Li K, Hu X, Shi H, Liu Z, Wu Y, Wang H, Huang C (2020) Genetic analysis and QTL mapping of stalk cell wall components and digestibility in maize recombinant inbred lines from B73 × By804. Crop J 8(1):132–139.
[37] Gao H, Jin M, Zheng XM, Chen J, Yuan D, Xin Y, Wang M, Huang D, Zhang Z, Zhou K, Sheng P, Ma J, Ma W, Deng H, Jiang L, Liu S, Wang H, Wu C, Yuan L, Wan J (2014) Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Pro Natl Acad Sci U S A 111(46):16337–16342.
[38] Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang QF (2011) A Major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant 4(2):319–330.
[39] Hwang WJ, Ha J, Lee T, Jeong H, Kim MY, Kim SK, LeeYH, Jung JW, Lee SH (2017) A candidate flowering gene in mungbean is homologous to a soybean Phytochrome A gene. Euphytica 213:79.
[40] Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J (2008) Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A Gene. Genetics 180(2):995–1007.
[41] Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K (2009) Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182 (4):1251–1262.
[42] Zhou H, Peng Q, Zhao J, Owiti A, Ren F, Liao L, Wang L, Deng X, Jiang Q, Han Y(2016) Multiple R2R3-MYB transcription factors involved in the regulation of anthocyanin accumulation in peach flower. Front Plant Sci 7:1557.
[43] Cho K, Cho KS, Sohn HB, Ha IJ, Hong SY, Lee H, Kim YM, Nam MH (2016) Network analysis of the metabolome and transcriptome reveals novel regulation of potato pigmentation. J Exp Bot 67(5):1519–1533.
[44] Li D, Sun M, Han Y, Teng W, Li W (2010) Identification of QTL underlying soluble pigment content in soybean stems related to resistance to soybean white mold (Sclerotinia sclerotiorum). Euphytica 172(1):49–57.
[45] Wegulo SN, Yang XB, Martinson CA (1998) Soybean cultivar responses to Sclerotiniasclerotiorum in field and controlled environment studies. Plant Dis 82(11):1264–1270.
[46] Wang LX, Cheng XZ, Wang SH, Liu Y (2013) Inheritance of several traits in mungbean (Vignaradiata). Acta Agron Sin 39(7):1172–1178 (Chinese with English abstract).
[47] Wang JH, Zhang YW, Cheng XZ, Wang LX (2017) Construction of genetic map and identification of QTLs related to agronomic traits in mung bean. Acta Agron Sin 43(7): 1096–1102 (Chinese with English abstract).
[48] Yan F, Di S, Takahashi R (2015) CACTA-superfamily transposable element is inserted in MYB transcription factor gene of soybean line producing variegated seeds. Genome 58(8):365–374.