The human microbiome includes the microbes that reside in the human body, such as bacteria, viruses, fungi, and protozoa, and their genomes. Currently, a growing number of studies have evidenced the relationship between the local resident microbiota and the gut microbiome in cancer and cancer treatment [22–24]. The utilization of ICIs is considered a revolution in cancer therapy that changes the poor prognosis of many advanced-stage cancers, and the tumor response to ICIs was found to have a strong association with gut microbiota in both clinical cohorts and preclinical mouse models [25–29]. Several studies have found that Bacteroidetes may be a biomarker of nonresponse to ICIs in patients with metastatic melanoma [10, 12]. In non-small-cell lung cancer (NSCLC) and renal cell carcinoma (RCC), Akkermansia muciniphila and Alistipes have been found to be biomarkers of ICI responders [6]. In addition, the gut microbiota also has an impact on the survival of tumor patients. Routy et al. found that among patients with NSCLC, RCC, and urothelial carcinoma (UC) who received anti-PD1 immunotherapy, the PFS and OS were significantly reduced in patients treated with antibiotics [6]. These studies indicate that there is a strong correlation between gut microbiota and the efficacy of tumor immunotherapy. However, it is well known that the gut microbiome is a very complex system, so studying the effects of single bacteria on tumor immunotherapy has inevitable limitations, and the small intestine and stomach microbiota may also influence the effectiveness of ICIs [30].
Similar to the intestinal flora, the relationship between H. pylori infection and tumor immunotherapy has attracted the attention of researchers. Recently, Oster P et al. found that in mice engrafted with MC38 colon adenocarcinoma or B16-OVA melanoma cells, the tumor volumes of noninfected mice undergoing anti-CTLA4 and/or PD-1 or anticancer vaccine treatments were significantly smaller than those of infected mice. Two independent cohorts of patients with NSCLC on anti-PD-1 therapy verified that H. pylori seropositivity is associated with a lower effectiveness of anti-PD-1 immunotherapy in humans [31]. Their study is the first to suggest that the stomach microbiota affects the response to cancer immunotherapies. Similarly, our research found that H. pylori-positive patients had a higher risk of nonclinical response to anti-PD-1 antibody, and we also observed prolonged PFS and OS in patients in the H. pylori-negative group compared to the H. pylori-positive group. To our knowledge, the present study is the first to evaluate the association of H. pylori infection with outcome in AGC patients treated with an anti-PD-1 antibody. Although Cox regression revealed that H. pylori infection was not independently associated with OS, it is still helpful to predict the efficacy and prognosis of immunotherapy for AGC patients. It should be noted that the diagnostic methods for H. pylori infection in this study include 13C-UBT, HpSA test and histopathology, which all reflect the current active H. pylori infection. This is different from the study of Oster P et al., in which the H. pylori seropositive patients included both past and current infection populations. Although they found that the eradication of H. pylori infection by antibiotic administration does not increase the efficacy of vaccine-based immunotherapy, we cannot exclude the possibility that current active H. pylori infection and past infection may have a different influence on tumor immunotherapy.
The treatment of tumors by immune checkpoint inhibitors depends on the activation of immune cells [32], but the reason why H. pylori infection can affect tumor immunotherapy is not clear. According to the current research, this may be attributed to the microenvironment. Like most solid tumors, the microenvironment of epithelial-derived gastric adenocarcinoma consists of a variety of stromal cell types, including fibroblasts and neuronal, endothelial and immune cells. It is reported that H. pylori infection can prevent allergic asthma in mouse models through the induction of regulatory T cells [33]. Oster P et al. found that H. pylori inhibited antitumoural CD8+ T-cell responses by altering the cross-presentation activities of dendritic cells (DCs) in humans. They also observed a decreased number of myeloid cells and a substantially decreased expression of genes induced by type I interferon, IFNγ and IL-6 in the tumors of infected patients with NSCLC undergoing anti-PD1 treatment [31]. It is possible that the effect of H. pylori and H. pylori-derived factors on immune cells influences the effect of tumor immunotherapy. However, the impact of H. pylori infection on the composition of human gastrointestinal microbiota has been verified [34], and it has been reported that the immunopathogenesis of the stomach induced by H. pylori could trigger large intestinal microbiota [35]. Therefore, it is reasonable for us to suspect that H. pylori, in addition to affecting immune cells, may alter the gastrointestinal microbiota to influence tumor immunotherapy. Additional experiments are needed to explore the underlying mechanisms of H. pylori in decreasing the effectiveness of cancer immunotherapies.
There were some limitations in this study. First, this was a retrospective analysis of a small sample size from a single center, so external validation cohort studies with larger sample sizes are needed to confirm the robustness of our findings.
Second, the diagnoses of H. pylori in this study reflect the current active infection. Further research is needed to determine whether this result is applicable to past infection populations. Finally, as important prognostic factors for gastric cancer immunotherapy, the data of PD-L1 combined positive score positivity, microsatellite instability-high (MSI-H) and Epstein–Barr virus-positive (EBV+) [36] were incomplete in this study, so they were not included in multivariate regression analysis.
In summary, our study is the first to show the association between H. pylori infection and the outcome of immunotherapy for AGC patients. In the future, H. pylori may become a powerful prognostic biomarker of personalized immunotherapy for cancer patients. However, multicenter, large sample and prospective clinical studies are needed to verify the association. The role of H. pylori in predicting prognosis in patients treated with anti-PD-1 antibody, and the underlying molecular mechanisms need further study.