Abascal F, Zardoya R, Posada D (2005) ProtTest: Selection of best-fit models of protein evolution. Bioinformatics 21(9):2104–2105. https://doi.org/10.1093/bioinformatics/bti263
Ali A, Gao X, Guo Y (2018) Initiation, progression, and genetic manipulation of leaf senescence. Methods Mol Biol 1744:9–31. https://doi.org/10.1007/978-1-4939-7672-0_2
Bai Y, Sunarti S, Kissoudis C, Visser RGF, van der Linden CG (2018) The role of tomato WRKY genes in plant responses to combined abiotic and biotic stresses. Front Plant Sci 9:801. https://doi.org/10.3389/fpls.2018.00801
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(Web Server issue):W202-208. https://doi.org/10.1093/nar/gkp335
Bakshi M, Oelmüller R (2014) WRKY transcription factors: Jack of many trades in plants. Plant Signal Behav 9(FEB):1–18. https://doi.org/10.4161/psb.27700
Balazadeh S, Riaño-Pachón DM, Mueller-Roeber B (2008) Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol 10(SUPPL. 1):63–75. https://doi.org/10.1111/j.1438-8677.2008.00088.x
Besseau S, Li J, Palva ET (2012) WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 63(7):2667–2679. https://doi.org/10.1093/jxb/err450
Birkenbihl RP, Kracher B, Ross A, Kramer K, Finkemeier I, Somssich IE (2018) Principles and characteristics of the Arabidopsis WRKY regulatory network during early MAMP-triggered immunity. Plant J 96(3):487–502. https://doi.org/10.1111/tpj.14043
Bombarely A, Moser M, Amrad A, Bao M, Bapaume L, Barry CS, Bliek M, Boersma MR, Borghi L, Bruggmann R, Bucher M, D’Agostino N, Davies K, Druege U, Dudareva N, Egea-Cortines M, Delledonne M, Fernandez-Pozo N, Franken P, Grandont L, Heslop-Harrison JS, Hintzsche J, Johns M, Koes R, Lv X, Lyons E, Malla D, Martinoia E, Mattson NS, Morel P, Mueller LA, Muhlemann J, Nouri E, Passeri V, Pezzotti M, Qi Q, Reinhardt D, Rich M, Richert-Pöggeler KR, Robbins TP, Schatz MC, Schranz ME, Schuurink RC, Schwarzacher T, Spelt K, Tang H, Urbanus SL, Vandenbussche M, Vijverberg K, Villarino GH, Warner RM, Weiss J, Yue Z, Zethof J, Quattrocchio F, Sims TL, Kuhlemeier C (2016) Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nat Plants 2(6):16074. https://doi.org/10.1038/nplants.2016.74
Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim Y -s., Penfold CA, Jenkins D, Zhang C, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23(3):873–894. https://doi.org/10.1105/tpc.111.083345
Broderick SR, Jones ML (2014) An optimized protocol to increase virus-induced gene silencing efficiency and minimize viral symptoms in Petunia. Plant Mol Biol Report 32(1):219–233. https://doi.org/10.1007/s11105-013-0647-3
Broderick SR, Wijeratne S, Wijeratn AJ, Chapin LJ, Meulia T, Jones ML (2014) RNA-sequencing reveals early, dynamic transcriptome changes in the corollas of pollinated petunias. BMC Plant Biol 14(1):1–21. https://doi.org/10.1186/s12870-014-0307-2
Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Pyung OL, Hong GN, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42(4):567–585. https://doi.org/10.1111/j.1365-313X.2005.02399.x
Buet A, Costa ML, Martínez DE, Guiamet JJ (2019) Chloroplast protein degradation in senescing leaves: Proteases and lytic compartments. Front Plant Sci 10(June):747. https://doi.org/10.3389/fpls.2019.00747
Butt A, Mousley C, Morris K, Beynon J, Can C, Holub E, Greenberg JT, Buchanan-Wollaston V (1998) Differential expression of a senescence-enhanced metallothionein gene in Arabidopsis in response to isolates of Peronospora parasitica and Pseudomonas syringae. Plant J 16(2):209–221. https://doi.org/10.1046/j.1365-313x.1998.00286.x
Chen C, Zeng L, Ye Q (2018) Proteomic and biochemical changes during senescence of Phalaenopsis ‘Red Dragon’ petals. Int J Mol Sci 19(5). https://doi.org/10.3390/ijms19051317
Chen F, Hu Y, Vannozzi A, Wu K, Cai H, Qin Y, Mullis A, Lin Z, Zhang L (2017a) The WRKY transcription factor family in model plants and crops. Crit Rev Plant Sci 36(5–6):311–335. https://doi.org/10.1080/07352689.2018.1441103
Chen L, Xiang S, Chen Y, Li D, Yu D (2017b) Arabidopsis WRKY45 interacts with the DELLA protein RGL1 to positively regulate age-triggered leaf senescence. Mol Plant 10(9):1174–1189. https://doi.org/10.1016/j.molp.2017.07.008
Cheng Y, Ahammed GJ, Yao Z, Ye Q, Ruan M, Wang R, Li Z, Zhou G, Wan H (2019) Comparative genomic analysis reveals extensive genetic variations of WRKYs in Solanaceae and functional variations of CaWRKYs in pepper. Front Genet 10(MAY). https://doi.org/10.3389/fgene.2019.00492
Cheng Y, Yao ZP, Ruan MY, Ye QJ, Wang RQ, Zhou GZ, Luo J, Li ZM, Yang YJ, Wan HJ (2016) In silico identification and characterization of the WRKY gene superfamily in pepper (Capsicum annuum L.). Genet Mol Res 15(3). https://doi.org/10.4238/gmr.15038675
Di Rienzo JA (2009) Statistical software for the analysis of experiments of functional genomics.
Ding ZJ, Yan JY, Li GX, Wu ZC, Zhang SQ, Zheng SJ (2014) WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA. Plant J 79(5):810–823. https://doi.org/10.1111/tpj.12597
Doll J, Muth M, Riester L, Nebel S, Bresson J, Lee H-CC, Zentgraf U (2020) Arabidopsis thaliana WRKY25 transcription factor mediates oxidative stress tolerance and regulates senescence in a redox-dependent manner. Front Plant Sci 10:1734. https://doi.org/10.3389/fpls.2019.01734
Druege U, Franken P (2019) Petunia as model for elucidating adventitious root formation and mycorrhizal symbiosis: at the nexus of physiology, genetics, microbiology and horticulture. Physiol Plant 165(1):58–72. https://doi.org/10.1111/ppl.12762
- Dimitriadou, K. Hornik, F. Leisch, D. Meyer, A. Weingessel E (2006) e1071: Misc Functions of the Department of Statistics (e1071), TU Wien. R Package Version 1. 6–3
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47(D1):D427–D432. https://doi.org/10.1093/nar/gky995
Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206
Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371
Finatto T, Viana VE, Woyann LG, Busanello C, da Maia LC, de Oliveira AC (2018) Can WRKY transcription factors help plants to overcome environmental challenges? Genet Mol Biol 41(3):533–544. https://doi.org/10.1590/1678-4685-gmb-2017-0232
Galili T, O’Callaghan A, Sidi J, Sievert C (2018) heatmaply: an R package for creating interactive cluster heatmaps for online publishing. Bioinformatics 34(9):1600–1602. https://doi.org/10.1093/bioinformatics/btx657
Ge Y, Lai Q, Luo P, Liu X, Chen W (2019) Transcriptome profiling of Gerbera hybrida reveals that stem bending is caused by water stress and regulation of abscisic acid. BMC Genomics 20(1):1–22. https://doi.org/10.1186/s12864-019-5961-1
Gepstein S, Sabehi G, Carp M-J, Hajouj T, Nesher MFO, Yariv I, Dor C, Bassani M (2003) Large-scale identification of leaf senescence-associated genes. Plant J 36(5):629–642. https://doi.org/10.1046/j.1365-313X.2003.01908.x
Gerats T, Strommer J (2009) Petunia: Evolutionary, developmental and physiological genetics (second edition). Petunia Evol Dev Physiol Genet (Second Ed :1–445. https://doi.org/10.1007/978-0-387-84796-2
Gerats T, Vandenbussche M (2005) A model system for comparative research: Petunia. Trends Plant Sci 10(5):251–256. https://doi.org/10.1016/j.tplants.2005.03.005
Giacomelli JI, Weigel D, Chan RL, Manavella PA (2012) Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage. New Phytol 195:766–773. https://doi.org/10.1111/j.1469-8137.2012.04259.x
Gonzalez S, Clavijo B, Rivarola M, Moreno P, Fernandez P, Dopazo J, Paniego N (2017) ATGC transcriptomics: a web-based application to integrate, explore and analyze de novo transcriptomic data. BMC Bioinformatics 18(1):121. https://doi.org/10.1186/s12859-017-1494-2
Gregersen PL, Culetic A, Boschian L, Krupinska K (2013) Plant senescence and crop productivity. Plant Mol Biol 82(6):603–622. https://doi.org/10.1007/s11103-013-0013-8
Griffiths CA, Gaff DF, Neale AD (2014) Drying without senescence in resurrection plants. Front Plant Sci 5(February):1–18. https://doi.org/10.3389/fpls.2014.00036
Gu L, Dou L, Guo Y, Wang H, Li L, Wang C, Ma L, Wei H, Yu S (2019a) The WRKY transcription factor GhWRKY27 coordinates the senescence regulatory pathway in upland cotton (Gossypium hirsutum L.). BMC Plant Biol 19(1). https://doi.org/10.1186/s12870-019-1688-z
Gu L, Li L, Wei H, Wang H, Su J, Guo Y, Yu S (2018a) Identification of the group IIa WRKY subfamily and the functional analysis of GhWRKY17 in upland cotton (Gossypium hirsutum L.). PLoS One 13(1). https://doi.org/10.1371/journal.pone.0191681
Gu L, Ma Q, Zhang C, Wang C, Wei H, Wang H, Yu S (2019b) The cotton GhWRKY91 transcription factor mediates leaf senescence and responses to drought stress in transgenic Arabidopsis thaliana. Front Plant Sci 10:1352. https://doi.org/10.3389/fpls.2019.01352
Gu L, Wei H, Wang H, Su J, Yu S (2018b) Characterization and functional analysis of GhWRKY42, a group IId WRKY gene, in upland cotton (Gossypium hirsutum L.). BMC Genet 19(1):48. https://doi.org/10.1186/s12863-018-0653-4
Guo P, Li Z, Huang P, Li B, Fang S, Chu J, Guo H (2017) A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence. Plant Cell 29(11):2854–2870. https://doi.org/10.1105/tpc.17.00438
Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant, Cell Environ 27(5):521–549. https://doi.org/10.1111/j.1365-3040.2003.01158.x
Guo Y, Gan S (2005) Leaf Senescence: Signals, Execution, and Regulation. In: Curr Top Dev Biol. pp 83–112
Hall TA (1999) Hall, T.A. In: BioEdit A User-Friendly Biol. Seq. Alignment Ed. Anal. Progr. Wind. 95/98/NT. Nucleic Acids Symp. Ser.
Han M, Kim CY, Lee J, Lee SK, Jeon JS (2014) OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice. Mol Cells 37(7):532–539. https://doi.org/10.14348/molcells.2014.0128
Huang R, Liu D, Huang M, Ma J, Li Z, Li M, Sui S (2019) CpWRKY71, a WRKY transcription factor gene of Wintersweet (Chimonanthus praecox), promotes flowering and leaf senescence in Arabidopsis. Int J Mol Sci 20(21). https://doi.org/10.3390/ijms20215325
Huang S, Gao Y, Liu J, Peng X, Niu X, Fei Z, Cao S, Liu Y (2012) Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Mol Genet Genomics 287(6):495–513. https://doi.org/10.1007/s00438-012-0696-6
Jagadish KS V., Kavi Kishor PB, Bahuguna RN, von Wirén N, Sreenivasulu N (2015) Staying alive or going to die during terminal senescence—An enigma surrounding yield stability. Front Plant Sci 6(November):1–14. https://doi.org/10.3389/fpls.2015.01070
Jiang Y, Liang G, Yang S, Yu D (2014) Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. Plant Cell 26(1):230–245. https://doi.org/10.1105/tpc.113.117838
Jing S, Zhou X, Song Y, Yu D (2009) Heterologous expression of OsWRKY23 gene enhances pathogen defense and dark-induced leaf senescence in Arabidopsis. Plant Growth Regul 58(2):181–190. https://doi.org/10.1007/s10725-009-9366-z
Jones ML (2013) Mineral nutrient remobilization during corolla senescence in ethylene-sensitive and -insensitive flowers. AoB Plants 5:1–11. https://doi.org/10.1093/aobpla/plt023
Jones ML (2004) Changes in Gene Expression during Senescence. In: Plant Cell Death Processes. Academic Press, Elsevier Inc., pp 51–71
Jones ML, Chaffin GS, Eason JR, Clark DG (2005) Ethylene-sensitivity regulates proteolytic activity and cysteine protease gene expression in petunia corollas. J Exp Bot 56(420):2733–2744. https://doi.org/10.1093/jxb/eri266
Kim T, Kang K, Kim SH, An G, Paek NC (2019) OsWRKY5 promotes rice leaf senescence via senescence-associated NAC and abscisic acid biosynthesis pathway. Int J Mol Sci 20(18). https://doi.org/10.3390/ijms20184437
Krishnakumar V, Hanlon MR, Contrino S, Ferlanti ES, Karamycheva S, Kim M, Rosen BD, Cheng CY, Moreira W, Mock SA, Stubbs J, Sullivan JM, Krampis K, Miller JR, Micklem G, Vaughn M, Town CD (2015) Araport: The Arabidopsis Information Portal. Nucleic Acids Res 43(D1):D1003–D1009. https://doi.org/10.1093/nar/gku1200
Kuai B, Chen J, Hörtensteiner S (2018) The biochemistry and molecular biology of chlorophyll breakdown. J Exp Bot 69(4):751–767. https://doi.org/10.1093/jxb/erx322
Langston BJ, Bai S, Jones ML (2005) Increases in DNA fragmentation and induction of a senescence-specific nuclease are delayed during corolla senescence in ethylene-insensitive (etr1-1) transgenic petunias. J Exp Bot 56(409):15–23. https://doi.org/10.1093/jxb/eri002
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van De Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327. https://doi.org/10.1093/nar/30.1.325
Li M-YY, Xu Z-SS, Tian C, Huang Y, Wang F, Xiong A-SS (2016) Genomic identification of WRKY transcription factors in carrot (Daucus carota) and analysis of evolution and homologous groups for plants. Sci Rep 6(March):1–17. https://doi.org/10.1038/srep23101
Li Z, Peng J, Wen X, Guo H (2012) Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence. J Integr Plant Biol 54(8):526–539. https://doi.org/10.1111/j.1744-7909.2012.01136.x
Liu L, Xu W, Hu X, Liu H, Lin Y (2016) W-box and G-box elements play important roles in early senescence of rice flag leaf. Sci Rep 6(September 2015):1–9. https://doi.org/10.1038/srep20881
Liu X, Li Z, Jiang Z, Zhao Y, Peng J, Jin J, Guo H, Luo J (2011) LSD: A leaf senescence database. Nucleic Acids Res 39(SUPPL. 1):D1103-7. https://doi.org/10.1093/nar/gkq1169
Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55(6):853–867. https://doi.org/10.1007/s11103-005-2142-1
Moschen S, Marino J, Nicosia S, Higgins J, Alseekh S, Astigueta F, Bengoa Luoni S, Rivarola M, Fernie AR, Blanchet N, Langlade NB, Paniego N, Fernández P, Heinz RA (2019) Exploring gene networks in two sunflower lines with contrasting leaf senescence phenotype using a system biology approach. BMC Plant Biol 19(1):1–15. https://doi.org/10.1186/s12870-019-2021-6
Pal NR, Bezdek JC, Hathaway RJ (1996) Sequential competitive learning and the fuzzy c-means clustering algorithms. Neural Networks 9(5):787–796. https://doi.org/10.1016/0893-6080(95)00094-1
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):45e – 45. https://doi.org/10.1093/nar/29.9.e45
Phukan UJ, Jeena GS, Shukla RK (2016) WRKY transcription factors: Molecular regulation and stress responses in plants. Front Plant Sci 7(June):1–14. https://doi.org/10.3389/fpls.2016.00760
Potschin M, Schlienger S, Bieker S, Zentgraf U (2014) Senescence networking: WRKY18 is an upstream regulator, a downstream target gene, and a protein interaction partner of WRKY53. J Plant Growth Regul 33(1):106–118. https://doi.org/10.1007/s00344-013-9380-2
Price AM, Aros Orellana DF, Salleh FM, Stevens R, Acock R, Buchanan-Wollaston V, Stead AD, Rogers HJ, Orellana DFA, Salleh FM, Stevens R, Acock R, Buchanan-Wollaston V, Stead AD, Rogers HJ (2008) A comparison of leaf and petal senescence in Wallflower reveals common and distinct patterns of gene expression and physiology. Plant Physiol 147(4):1898–1912. https://doi.org/10.1104/pp.108.120402
Quirino BF, Noh YS, Himelblau E, Amasino RM (2000) Molecular aspects of leaf senescence. Trends Plant Sci 5:278–282
Raineri J, Hartman MD, Chan RL, Iglesias AA, Ribichich KF (2016) A sunflower WRKY transcription factor stimulates the mobilization of seed-stored reserves during germination and post-germination growth. Plant Cell Rep 35(9):1875-1890. https://doi.org/10.1007/s00299-016-2002-2
Rinerson CI, Scully ED, Palmer NA, Donze-Reiner T, Rabara RC, Tripathi P, Shen QJ, Sattler SE, Rohila JS, Sarath G, Rushton PJ (2015) The WRKY transcription factor family and senescence in switchgrass. BMC Genomics 16(1):1–17. https://doi.org/10.1186/s12864-015-2057-4
Robatzek S, Somssich IE (2001) A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant J 28(2):123–133. https://doi.org/10.1046/j.1365-313X.2001.01131.x
Rogers HJ (2012) Is there an important role for reactive oxygen species and redox regulation during floral senescence? Plant, Cell Environ 35(2):217–233. https://doi.org/10.1111/j.1365-3040.2011.02373.x
Rogers HJ (2013) From models to ornamentals: How is flower senescence regulated? Plant Mol Biol 82(6):563–574. https://doi.org/10.1007/s11103-012-9968-0
Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, Moorman AFM (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37(6):e45. https://doi.org/10.1093/nar/gkp045
Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15(5):247–258. https://doi.org/10.1016/j.tplants.2010.02.006
Shibuya K, Yamada T, Ichimura K (2016) Morphological changes in senescing petal cells and the regulatory mechanism of petal senescence. J Exp Bot 67(20):5909–5918. https://doi.org/10.1093/jxb/erw337
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. https://doi.org/10.1093/molbev/msr121
Thomas H, Ougham HJ, Wagstaff C, Stead AD (2003) Defining senescence and death. J Exp Bot 54 (385):1127–1132. https://doi.org/10.1093/jxb/erg133
Tolosa LN, Zhang Z (2020) The role of major transcription factors in solanaceous food crops under different stress conditions: Current and future perspectives. Plants 9(1). https://doi.org/10.3390/plants9010056
Tripathi P, Rabara RC, Langum TJ, Boken AK, Rushton DL, Boomsma DD, Rinerson CI, Rabara J, Reese RN, Chen X, Rohila JS, Rushton PJ (2012) The WRKY transcription factor family in Brachypodium distachyon. BMC Genomics 13(1):1. https://doi.org/10.1186/1471-2164-13-270
Trivellini A, Cocetta G, Hunter DA, Vernieri P, Ferrante A (2016) Spatial and temporal transcriptome changes occurring during flower opening and senescence of the ephemeral hibiscus flower, Hibiscus rosa-sinensis. J Exp Bot 67(20):5919–5931. https://doi.org/10.1093/jxb/erw295
Trupkin SA, Astigueta FH, Baigorria AH, García MN, Delfosse VC, González SA, Pérez de la Torre MC, Moschen S, Lía VV, Fernández P, Heinz RA (2019) Identification and expression analysis of NAC transcription factors potentially involved in leaf and petal senescence in Petunia hybrida. Plant Sci 287:110195. https://doi.org/10.1016/j.plantsci.2019.110195
Tsanakas GF, Manioudaki ME, Economou AS, Kalaitzis P (2014) De novo transcriptome analysis of petal senescence in Gardenia jasminoides Ellis. BMC Genomics 15(1):1–15. https://doi.org/10.1186/1471-2164-15-554
Ülker B, Shahid Mukhtar M, Somssich IE (2007) The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta 226(1):125–137. https://doi.org/10.1007/s00425-006-0474-y
United States Department of Agriculture (USDA) NASS (2019) Floriculture crops 2018 summary
Van Doorn WG, Woltering EJ (2008) Physiology and molecular biology of petal senescence. J Exp Bot 59(3):453–480. https://doi.org/10.1093/jxb/erm356
Vandenbussche M, Chambrier P, Rodrigues Bento S, Morel P (2016) Petunia, your next supermodel? Front Plant Sci 7(February):1–11. https://doi.org/10.3389/fpls.2016.00072
Villarino GH, Bombarely A, Giovannoni JJ, Scanlon MJ, Mattson NS (2014) Transcriptomic analysis of Petunia hybrida in response to salt stress using high throughput RNA sequencing. PLoS One 9(4):e94651. https://doi.org/10.1371/journal.pone.0094651
Wagstaff C, Yang TJW, Stead AD, Buchanan-Wollaston V, Roberts JA (2009) A molecular and structural characterization of senescing Arabidopsis siliques and comparison of transcriptional profiles with senescing petals and leaves. Plant J 57(4):690–705. https://doi.org/10.1111/j.1365-313X.2008.03722.x
Wang H, Chang X, Lin J, Chang Y, Chen JC, Reid MS, Jiang CZ (2018) Transcriptome profiling reveals regulatory mechanisms underlying corolla senescence in petunia. Hortic Res 5(1):1–13. https://doi.org/10.1038/s41438-018-0018-1
Wang M, Vannozzi A, Wang G, Liang YH, Tornielli GB, Zenoni S, Cavallini E, Pezzotti M, Cheng ZMM (2014) Genome and transcriptome analysis of the grapevine (Vitis vinifera L.) WRKY gene family. Hortic Res 1(February):1–16. https://doi.org/10.1038/hortres.2014.16
Wang T, Yang B, Guan Q, Chen X, Zhong Z, Huang W, Zhu W, Tian J (2019) Transcriptional regulation of Lonicera japonica Thunb. during flower development as revealed by comprehensive analysis of transcription factors. BMC Plant Biol 19(1):198. https://doi.org/10.1186/s12870-019-1803-1
Wang Z, Ni L, Guo J, Liu L, Li H, Yin Y, Gu C (2020) Phylogenetic and transcription analysis of Hibiscus hamabo Sieb. et Zucc. WRKY transcription factors. DNA Cell Biol 39(7):1141–1154. https://doi.org/10.1089/dna.2019.5254
Winter D, Vinegar B, Nahal H, Ammar R, Wilson G V., Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2(8):e718. https://doi.org/10.1371/journal.pone.0000718
Woo HR, Masclaux-Daubresse C, Lim PO (2018) Plant senescence: How plants know when and how to die. J Exp Bot 69(4):715–718. https://doi.org/10.1093/jxb/ery011
Wu KL, Guo ZJ, Wang HH, Li J (2005) The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Res 12(1):9–26. https://doi.org/10.1093/dnares/12.1.9
Xie Z, Zhang ZL, Zou X, Huang J, Ruas P, Thompson D, Shen QJ (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol 137(1):176–189. https://doi.org/10.1104/pp.104.054312
Yamazaki K, Suzuki T, Iigo M, Aiso-Sanada H, Kurokura T, Yamane K (2020) Effects of trehalose and sucrose on gene expression related to senescence of cut astilbe (Astilbe × arendsii Arends) flowers. Hortic J 89(5):628–638. https://doi.org/10.2503/hortj.UTD-182
Yang X, Deng C, Zhang Y, Cheng Y, Huo Q, Xue L (2015) The WRKY transcription factor genes in eggplant (Solanum melongena L.) and Turkey berry (Solanum torvum Sw.). Int J Mol Sci 16(4):7608–7626. https://doi.org/10.3390/ijms16047608
You J, Zhang L, Song B, Qi X, Chan Z (2015) Systematic analysis and identification of stress-responsive genes of the NAC gene family in Brachypodium distachyon. PLoS One 10(3):1–20. https://doi.org/10.1371/journal.pone.0122027
Yuan J, Sun X, Guo T, Chao Y, Han L (2020) Global transcriptome analysis of alfalfa reveals six key biological processes of senescent leaves. PeerJ 2020(1):1–23. https://doi.org/10.7717/peerj.8426
Yu J, Tu L, Subburaj S, Bae S, Lee G-J (2020) Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR-Cas9 ribonucleoproteins. Plant Cell Rep (2020). https://doi.org/10.1007/s00299-020-02593-1
Zhang B, Yang X, Yang C, Li M, Guo Y (2016a) Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in Petunia. Sci Rep 6(February):1–8. https://doi.org/10.1038/srep20315
Zhang H, Zhao M, Song Q, Zhao L, Wang G, Zhou C (2016b) Identification and function analyses of senescence-associated WRKYs in wheat. Biochem Biophys Res Commun 474(4):761–767. https://doi.org/10.1016/j.bbrc.2016.05.034
Zhang C, Wang D, Yang C, Kong N, Shi Z, Zhao P, Nan Y, Nie T, Wang R, Ma H, Chen Q (2017) Genome-wide identification of the potato WRKY transcription factor family. PLoS One 12(7):1–20. https://doi.org/10.1371/journal.pone.0181573
Zhao L, Zhang W, Song Q, Xuan Y, Li K, Cheng L, Qiao H, Wang G, Zhou C (2020) A WRKY transcription factor, TaWRKY40‐D, promotes leaf senescence associated with jasmonic acid and abscisic acid pathways in wheat. Plant Biol. https://doi.org/10.1111/plb.13155
Zheng MS, Takahashi H, Miyazaki A, Yamaguchi K, Kusano T (2005) Identification of the cis-acting elements in Arabidopsis thaliana NHL10 promoter responsible for leaf senescence, the hypersensitive response against Cucumber mosaic virus infection, and spermine treatment. Plant Sci 168(2):415–422. https://doi.org/10.1016/j.plantsci.2004.09.016
Zhou X, Jiang Y, Yu D (2011) WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis. Mol Cells 31(4):303–313. https://doi.org/10.1007/s10059-011-0047-1
Zou C, Jiang W, Yu D (2010) Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. J Exp Bot 61(14):3901–3914. https://doi.org/10.1093/jxb/erq204