1. Saminathan, A. et al. A DNA-based voltmeter for organelles. Nat. Nanotechnol. 16, 96-103 (2021).
2. Kwon, P.S. et al. Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition. Nat. Chem. 12, 26-35 (2020).
3. Chao, J. et al. Solving mazes with single-molecule DNA navigators. Nat. Mater. 18, 273-279 (2019).
4. Chen, Y.H. et al. A synthetic light-driven substrate channeling system for precise regulation of enzyme cascade activity based on DNA origami. J. Am. Chem. Soc. 140, 8990-8996 (2018).
5. You, M.X. et al. DNA probes for monitoring dynamic and transient molecular encounters on live cell membranes. Nat. Nanotechnol. 12, 453-459 (2017).
6. Sun, L.L., Shen, F.Y., Xu, J., Han, X., Fan, C.H. & Liu, Z. DNA-edited ligand positioning on red blood cells to enable optimized T cell activation for adoptive immunotherapy. Angew. Chem. Int. Ed. 59, 14842-14853 (2020).
7. Li, H. et al. A DNA molecular robot that autonomously walks on the cell membrane to drive cell motility. Angew. Chem. Int. Ed. 60, 26087-26095 (2021).
8. Yao, C., Zhu, C.X., Tang, J.P., Ou, J.H., Zhang, R. & Yang, D.Y. T lymphocyte-captured DNA network for localized immunotherapy. J. Am. Chem. Soc. 143, 19330-19340 (2021).
9. Jung, C., Allen, P.B. & Ellington, A.D. A stochastic DNA walker that traverses A microparticle surface. Nat. Nanotechnol. 11, 157-163 (2016).
10. Tang, Y.N. et al. Constructing real-time, wash-free, and reiterative sensors for cell surface proteins using binding-induced dynamic DNA assembly. Chem. Sci. 6, 5729-5733 (2015).
11. Ren, K.W. et al. In situ genetically cascaded amplification for imaging RNA subcellular locations. J. Am. Chem. Soc. 142, 2968-2974 (2020).
12. Li, J. et al. Cell-membrane-anchored DNA nanoplatform for programming cellular interactions. J. Am. Chem. Soc. 141, 18013-18020 (2019).
13. Wang, L.P. et al. Bispecific aptamer induced artificial protein-pairing: a strategy for selective inhibition of receptor function. J. Am. Chem. Soc. 141, 12673-12681 (2019).
14. Li, J., Xun, K.Y., Zheng, L.Y., Peng, X.Y., Qiu, L.P. & Tan, W.H. DNA-based dynamic mimicry of membrane proteins for programming adaptive cellular interactions. J. Am. Chem. Soc. 143, 4585-4592 (2021).
15. Akbari, E. et al. Quantitative and multiplexed fluorescence lifetime imaging of intercellular tensile forces Engineering cell surface function with DNA origami. Adv. Mater. 29, 1703632 (2017).
16. Keshri, P. et al. Quantitative and multiplexed fluorescence lifetime imaging of intercellular tensile forces. Angew. Chem. Int. Ed. 60, 15548-15555 (2021).
17. Qin, Y.M., Jiang, Q., Yang, Q., Zhao, J.Q., Zhou, Q. & Zhou, Y.H. The functions, methods, and mobility of mitochondrial transfer between cells. Front. Oncol. 11, 672781 (2021).
18. Youle, R.J. & van der Bliek, M.A. Mitochondrial fission, fusion, and stress. Science 337, 1062-1065 (2012).
19. Hoppins, S., Lackner, L. & Nunnari, J. The machines that divide and fuse mitochondria. Annu. Rev. Biochem. 76, 751-780 (2007).
20. Whitley, B.N., Engelhart, E.A. & Hoppins, Mitochondrial dynamics and their potential as a therapeutic target. Mitochondrion 49, 269-283 (2019).
21. Wang, D.L. et al. A small molecule promotes mitochondrial fusion in mammalian cells. Angew. Chem. Int. Ed. 51, 9302-9305 (2012).
22. Wang, H.M., Lim, P.J., Karbowski, M. & Monteiro, M.J. Effects of overexpression of huntingtin proteins on mitochondrial integrity. Hum. Mol. Genet. 18, 737-752 (2009).
23. Sun, C., Wang, Z.Y., Yue, L.D., Huang, Q.X., Cheng, Q. & Wang, R.B. Supramolecular induction of mitochondrial aggregation and fusion. J. Am. Chem. Soc. 142, 16523-16527 (2020).
24. Shao, Y.L., Zhao, J., Yuan, J.Y., Zhao, Y.L. & Li, L.L. Organelle-specific photoactivation of DNA nanosensors for precise profiling of subcellular enzymatic activity. Angew. Chem. Int. Ed. 60, 8923-8931 (2021).
25. Tiwari, V.K., Mishra, B.B., Mishra, K.B., Mishra, N., Singh, A.S. & Chen, X. Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev. 116, 3086-3240 (2016).
26. Lau, K.L., Hamblin, G.D. & Sleiman, H.F. Gold nanoparticle 3D-DNA building blocks: high purity preparation and use for modular access to nanoparticle assemblies. Small 10, 660-666 (2014).
27. Tomac, A. et al. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373, 335-339 (1995).
28. Zuo, X.L., Xiao, Y. & Plaxco, K.W. High specificity, electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex matrices. J. Am. Chem. Soc. 131, 6944-6945 (2009).
29. Peng, P., Du, Y., Zheng, J., Wang, H.H. & Li, T. Reconfigurable bioinspired framework nucleic acid nanoplatform dynamically manipulated in living cells for subcellular imaging. Angew. Chem. Int. Ed. 58, 1648-1653 (2019).
30. Shuendler, A.J., Pu, K.Y., Cui, L.N. Uetrecht, J.P. & Rao, J.H. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat. Biotechnol. 32, 373-380 (2014).
31. McConnell, E.M., Cozma, I., Mou, Q.B., Brennan, J.D., Lu, Y. & Li, Y.F. Biosensing with DNAzymes. Chem. Soc. Rev. 50, 8954-8994 (2021).
32. Liu, L. et al. A localized DNA finite-state machine with temporal resolution. Sci. Adv. 8, abm9530 (2022).
33. Chang, X. et al. Construction of a multiple-aptamer-based DNA logic device on live cell membranes via associative toehold activation for accurate cancer cell identification. J. Am. Chem. Soc. 141, 12738-12743 (2019).
34. Yang, W.J. et al. Size-transformable antigen-presenting cell–mimicking nanovesicles potentiate effective cancer immunotherapy. Sci. Adv. 6, abd1631 (2020).
35. Lucero, M.Y. et al. Development of NIR-II photoacoustic probes tailored for deep-tissue sensing of nitric oxide. J. Am. Chem. Soc. 143, 7196-7202 (2021).
36. Perl, N.R., Ide, N.D., Prajapati, S., Perfect, H.H., Durón, S.G. & Gin, D.Y. Annulation of thioimidates and vinyl carbodiimides to prepare 2-aminopyrimidines, competent nucleophiles for intramolecular alkyne hydroamination. synthesis of (−)-crambidine. J. Am. Chem. Soc. 132, 1802-1803 (2010).
37. Qian, H. & He, L. Surface-initiated activators generated by electron transfer for atom transfer radical polymerization in detection of DNA point mutation. Anal. Chem. 81, 4536-4542 (2009).
38. Han, D. et al. A cascade reaction network mimicking the basic functional steps of adaptive immune response. Nat. Chem. 7, 835-841 (2015).
39. Hamblin, G.D., Carneiro, K.M.M., Fakhoury, J.F., Bujold, K.E. & Sleiman, H.F. Rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability. J. Am. Chem. Soc. 134, 2888-2891 (2012).