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Abstract
The 2021 eruption within the Fagradalsfjall volcanic system in Ice-
land provided a rare opportunity to record acoustic data generated
by a basaltic fissure. Eruptive activity in May 2021 was defined by
a sequence of repetitive lava fountaining activity. Here we describe
key observations and analysis conducted on acoustic data recorded by
a four-element infrasound microphone array near the eruption site.
Detailed inspection of acoustic waveforms and comparisons with seismic
data and lava fountain height measurements revealed a complex erup-
tive sequence during each lava fountain event: acoustic tremor during
peak lava fountaining was followed by a transition to Strombolian-style
activity with distinct high-amplitude impulsive waveforms. Quantita-
tive comparisons to jet noise spectra finds complex turbulence acoustics
during each event, with evidence of variations in the wavefield centred
on peak lava fountain heights. Strombolian explosions could mostly be
modelled by oscillations of bursting gas slugs at the top the magma
column, with a minor number of events exhibiting Helmholtz reso-
nance behaviour instead. We find an increase in bubble radii between
early and late May, suggesting a widening of the upper conduit during
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2 Fagradalsfjall Lava Fountain Acoustics

the lava fountain sequence. Finally, we propose that higher acous-
tic amplitudes, in addition to a wider conduit in late May, indicates
higher gas flux through the conduit culminating in shorter lava foun-
tain events. This study highlights the value of deploying acoustic sensors
for providing additional constraints on eruption dynamics and source
parameters during effusive fissure eruptions in Iceland and elsewhere.

Keywords: Acoustics, Fagradalsfjall, Iceland, lava fountain, Jet noise,
Strombolian

1 Introduction

Atmospheric acoustic signals with frequencies ranging from 0.02 to 20Hz are classi-

fied as infrasound and are regularly documented during volcanic activity (Johnson

and Ripepe, 2011; Fee and Matoza, 2013). These atmospheric perturbations may be

generated by processes including short-duration explosions, sustained volcanic jets,

and mass flows. Localisation and quantification of acoustics during eruptions can

provide information on shallow processes within the conduit and above the vent.

Therefore, the deployment of microphones around an active volcano can provide

additional insights into activity not readily available by other means.

Relative to other types of eruptive activity such as Strombolian and Vulcanian,

acoustic records of basaltic fissure eruptions with Hawaiian-style lava fountains are

rare with previous studies limited to events at Etna (Cannata et al, 2009, 2011) and

Kı̄lauea volcanoes (Fee et al, 2011; Lyons et al, 2021; Gestrich et al, 2021). Acoustic

activity during these events are usually manifested as semi-continuous tremor with

broadband frequency spectra characteristics. Using sensor arrays and networks, it is

possible to track the activity progression along fissures, including the opening of new

vents (Cannata et al, 2011; Fee et al, 2011), and quantifying the effusion rate of high-

speed, highly channelised lava flows (Lyons et al, 2021). Acoustic source processes at

the vent(s) during fissure eruptions have been modelled as either Strombolian-style

explosions (Cannata et al, 2011) or a sustained jet flow (Gestrich et al, 2021).

Low viscosity magma allows large gas bubbles to ascend through the magma col-

umn and manifest at the surface as distinct, impulsive, high amplitude Strombolian

bursts. During this type of activity, at least two different acoustic source processes

have been described. Firstly, strong gas bubble oscillation immediately prior to burst-

ing at the lava surface generates an m-shaped waveform where the positive peaks are

less intense than the negative peak (Vergniolle and Brandeis, 1996; Vergniolle et al,
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1996, 2004). Secondly, longer harmonic waveforms with an exponentially decaying

coda are linked to Helmholtz resonance of gas within or above the bubble (Vergniolle

and Caplan-Auerbach, 2004; Cannata et al, 2009; Fee et al, 2010b; Goto and Johnson,

2011). Modelling of Strombolian acoustics allows for quantitative estimates of param-

eters such as bubble radius, bubble length, and overpressure (Vergniolle et al, 1996,

2004; Vergniolle and Caplan-Auerbach, 2004). During the 2008 flank fissure eruption

at Etna volcano, both the bubble oscillation and Helmholtz resonance source model

were detected (Cannata et al, 2009). For different vents across the fissure, waveform

inversions for bubble oscillations produced estimated bubble radii of 2–3.5m with

bubble lengths of 7.2–7.6m (Cannata et al, 2009, 2011). In contrast, events gener-

ating Helmholtz resonance were modelled by bubbles of 6m radius and up to 40m

length (Cannata et al, 2009).

Recent studies have demonstrated how eruptions can generate an infrasonic form

of ‘jet noise’ such as those generated by small-scale anthropogenic jet flows (e.g.

Matoza et al, 2009; Fee et al, 2010a; Matoza et al, 2013; McKee et al, 2017; Gestrich

et al, 2021). Anthropogenic jet noise refers to sounds generated by turbulent exhaust

(i.e. a jet flow) exiting aircraft or rocket engines and have been studied in detail

for engineering investigations (e.g. Tam, 1998). Two distinct components of jet noise

have been recognised: large-scale turbulence (LST) and fine-scale turbulence (FST;

Tam, 2019). FST is associated with fine-scale eddies generating acoustics, whereas

LST is generated by instability waves forming at the margin of the jet flow (Tam,

2019). LST sound radiation is highly directional but may be reduced for volca-

noes due to higher temperature jets and a strong diffraction at lower frequencies

(Matoza et al, 2009). Jet noise frequency spectra exhibit self-similarity, with spectral

shape remaining relatively constant and scaling with frequency, diameter, and veloc-

ity (Tam, 1998). Studies have shown that this self-similarity can extend to volcanic

length scales (metres to hundreds of metres), therefore, similar relationships may

exist between volcanic jet noise spectra and vent diameter, jet velocity, and temper-

ature (Matoza et al, 2009, 2013; McKee et al, 2017; Gestrich et al, 2021). While the

spectral shapes are similar, the peak frequencies at volcanoes are generally lower and

can be explained through the Strouhal number, a non-dimensional parameter used

to describe oscillating flow (Seiner, 1984). Quantitative comparisons of similarity

spectra were carried out on acoustics recorded during the 2018 Kı̄lauea fissure erup-

tion in which included 80m high lava fountains (Gestrich et al, 2021). Changes in

misfits between the recorded acoustic spectra versus the similarity spectra coincided
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with variations in eruption dynamics, supporting possible quantitative estimation of

eruption flow features (Matoza et al, 2013; McKee et al, 2017; Gestrich et al, 2021).

In this paper, we describe acoustics recorded during the 2021 fissure eruption

of Fagradalsfjall, Iceland. In particular, we focus on repetitive lava fountaining that

characterised the eruptive activity in May. Each lava fountain was defined by a

sequence of activity that can be described by jetting followed by distinct Strombolian

explosions (see movie S1 for an example event). Isolation and careful analysis of

acoustics during the lava fountaining permits quantification of vent dimensions and

highlights the value of acoustic monitoring for future basaltic fissure eruptions.

2 Fagradalsfjall eruption

After a protracted period of earthquake activity on the Reykjanes peninsula in SW

Iceland, an eruption began at the Fagradalsfjall volcanic system on March 19 2021

(Barsotti et al, 2022), the first such eruption on the peninsula for nearly 800 years

(Sæmundsson et al, 2020). The eruption continued until September 18 2021, at which

point the lava flow field had covered an area of 4.8 km2 with an estimated bulk vol-

ume of 0.15 km3 (Pedersen et al, 2021). Eruptive activity in March and April was

spread over 9 distinct vents across a NNE-SSW trending line of 800m length (Fig.

1a). From the late April until the end of the eruption, activity was focused from

a single vent (Vent 5 in Barsotti et al, 2022), which we will refer to as the ‘main’

vent for the remainder of this article. From approximately 01:00 UTC on 2 May, the

eruptive activity was characterised by a sequence of repetitive lava fountaining of

up to 200m height above the vent (Fig. 1b; Barsotti et al, 2022). This period coin-

cided with peak discharge rate of lava from the eruption of 12–13m3·s-1 (Pedersen

et al, 2021). Variations in duration, repose intervals, and heights of the lava foun-

taining was observed throughout May and into early June, eventually transitioning

into discontinuous lava outpouring that defined the remainder of the eruption (Bar-

sotti et al, 2022). Seismic data analysis (Eibl et al, 2022) and FTIR gas emission

measurements (Scott et al. in prep.) have suggested the presence of a shallow cav-

ity (<500m) beneath the vent where repeated foam collapse in the magma may be

driving the distinctive lava fountaining activity.
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Fig. 1 (a) Map showing the location of the microphone array (blue circles) with respect to
the main vent (red triangle) and lava flow area on 3 May (orange area; Pedersen et al, 2021).
Also marked are locations of other vents that were no longer active by May (grey triangles),
the MER seismic station (yellow square), and the webcam used for estimating lava fountain
heights (purple diamond). DEM is from ArcticDEM (Porter et al, 2018, modified by the
National Land Survey of Iceland, 2020). Inset: Map of SW Iceland showing the Reykjanes
Peninsula with locations of the eruption site and Reykjavik metropolitan area indicated.
(b) Example of a lava fountain event at 11:07 UTC on 5 May, as recorded by the webcam
located in panel a. (c) Example of a Strombolian explosion on 11 May at the end of a lava
fountain event. Photo captured from vantage point 500m SSE of the vent with 150mm lens.

3 Data and Methods

3.1 Acoustic array and processing

The infrasound data presented in this study are from a four-element campaign array

installed on 21 April approximately 800m north-west of what would eventually be

the main vent (Fig. 1a). The 70m aperture array was equipped with four InfraBSU

V2 infrasound sensors (flat response from 0.1 to >40Hz; Marcillo et al, 2012)

with one co-located 4.5 Hz geophone (not used here) connected to DiGOS DATA-

CUBE3 digitisers recording data at 200Hz. We estimated a theoretical uncertainty

in back-azimuth of 4–5◦ and trace velocity of 18–22m·s-1 for this array configuration

(Szuberla and Olson, 2004). Sensor locations were estimated using time-averaged

locations from a handheld GPS receiver. The array ran almost continuously until 30

August, with the exception of 8–17 May when the array had to be removed due to

brush fires triggered by the eruption. Technical issues with the sensors from 21 to

23 May led to incorrect values of acoustic pressure levels being recorded, therefore
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data recorded during this period could only be used for the detection of coherent

signals and not for quantifying source parameters. We compare acoustics with seis-

micity recorded at station MER located NE of the main vent (Fig. 1a), which used

a LE-3D/5s seismometer recording data at 100 Hz.

Before processing, the acoustic data were filtered with a Butterworth bandpass

filter at 0.5–20Hz. The lower boundary was chosen to remove a strong micro-barom

signal, and the upper boundary was chosen to ensure as much of the eruptive signal

was recorded while removing anthropogenic noise interference (e.g. helicopters; Bar-

sotti et al, 2022). The data was processed with a least-squares beamforming algorithm

(Szuberla and Olson, 2004) to identify coherent signals in 10 s windows with 50%

overlap. Signals associated with eruptive activity were identified using back-azimuths

from 122–162◦, trace velocities of 250–400 m·s-1, and a median cross-correlation max-

imum of >0.5. To track the number of lava fountaining events occurring during our

time periods of analysis, we defined an ‘event’ as a time period when a coherent

eruption signal was detected for continuous periods of >60 s and followed by repose

intervals of >60 s. For each 10 s window with an identified eruption signal, relative

infrasound energy (Ea) was calculated by integrating squared pressure over time (Fee

et al, 2013; Lyons et al, 2021):

Ea =

∫ T

0

∆p2(t)dt (1)

We follow the reasoning of Lyons et al (2021) by using relative acoustic energy

because jet noise was a significant component of the wavefield during peak lava

fountaining (see section 4.2). Therefore, we cannot assume simple spherical acoustic

radiation pattern and any measure of energy or intensity on a single array will be

relative to itself. Estimating absolute acoustic energy would require observations from

multiple arrays at different distances, azimuths, and heights relative to the source

(Matoza et al, 2013).

3.2 Lava fountain height estimations

Lava fountain heights can be estimated from video camera image analysis by devel-

oping a kymograph (e.g. Witt and Walter, 2017). Kymographs were developed for

lava fountain events on 5 and 18 May using video recorded by a camera installed

on top of Langihryggur approximately 2 km SE of the main vent by Ríkisútvarpið

(RÚV), the Icelandic National Broadcasting Service (Fig. 1a). Images were recorded

at 25 fps and lava fountain heights were estimated in each frame relative to sea level.
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See supplementary information for a full description of how lava fountain heights

were estimated. As the camera view angle cannot see the base of the vent (Fig. 1b),

we plot lava fountain heights relative to the lowest section of the breach in the SE

section of the cone, which was estimated as 238m a.s.l.

3.3 Jet noise similarity spectra fitting

To quantify the presence of jet noise in acoustics generated during lava fountain-

ing activity at Fagradalsfjall, we used an approach recently developed to analyse

acoustics during the 2018 Kı̄lauea eruption (Gestrich et al, 2021). Here we provide

a brief description of this approach; see Gestrich et al (2021) for a detailed method

description and discussion.

The similarity spectra (i.e. the model spectra) for LST (SLST ) and FST (SFST )

are defined as the following (Tam et al, 1996):

SLST = A

(
r

Dj

)−2

︸ ︷︷ ︸
CLST

·F
(
f

fL

)
(2)

SFST = B

(
r

Dj

)−2

︸ ︷︷ ︸
CFST

·G
(
f

fF

)
(3)

where f is the frequency, Dj is the fully expanded diameter of the jet, r is the source-

receiver distance (800m), and A and B are the amplitudes of the large-scale and

fine-scale structures, respectively. The first half the right-hand side of each equation

is redefined to CLST and CFST , respectively, so that only one numerical value defines

the amplitude of each similarity spectrum. F and G are the spectrum functions of

the large-scale and fine-scale structures, respectively, and are dependent on the peak

frequency for LST (fL) and FST (fF ), which ultimately define the characteristic

shape of each similarity spectra. In general, LST has a narrower frequency spectrum

than FST (Tam, 2019).

To fit the similarity spectra with the frequency spectrum of the recorded acoustic

data, we use a least-squares method called Trust Region Reflective Algorithm. We

use the root mean squared deviation (RMSD) to quantify the difference between

the similarity spectrum S and the data spectrum d, defined as (Gestrich et al, 2021):

RMSD =

√
1

n

n∑
(Si − di)2 (4)
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Results are presented within the decibel scale (dB, relative to (20µPa)2/Hz). Due

to the complexity of the acoustic spectra during each lava fountain event, we focus

on using multiple overlapping frequency bands to fit the models to the data and

calculate the corresponding RMSD values. This results in a misfit spectrum for both

FST and LST, and subtracting the difference between the two produces a misfit

difference spectrogram which shows which of each model is more appropriate for the

data over time and different frequency bands. For the jet noise analysis, we limit the

frequency bands to the 0.15-20Hz range using 15 s windows with 90% overlap.

3.4 Bubble burst modelling

Examinations of the acoustics recorded during the lava fountaining at Fagradals-

fjall identified both bubble oscillation (Vergniolle and Brandeis, 1996; Vergniolle

et al, 2004) and Helmholtz resonance (Vergniolle and Caplan-Auerbach, 2004) events.

Here we describe the method used to describe and quantify the waveforms. A full

description of the models can be found in Appendix A.

Waveform inversions were carried out on bubble bursts manually picked from the

acoustic record at Fagradalsfjall and we used an approach similar to that described

for modelling acoustics recorded during the Bogoslof eruption (Lyons et al, 2019). For

bubble oscillation events, we calculated 105 synthetic waveforms from unique combi-

nations of bubble overpressure ∆P (5–80 kPa), initial bubble radius Ro (0.1–10m),

and bubble length L (5–200m), and solved equation (A1) with a Runge-Kutta ordi-

nary differential equation solver. For Helmholtz resonance events, we calculated 105

synthetic waveforms using equation (A6) and directly cross-correlated each with the

observed acoustic waveform. The ranges used for the variables were: 50–1x104 Pa for

∆P , 0.5–15m for Rhole, and 5–200m for L. The ranges of each value for each model

were chosen based on preliminary testing of the models against selected waveforms.

Each synthetic waveform was then directly compared with the observed acoustic

waveform and was considered a match if they fell within±5% of the observed peak-to-

peak pressure and the cross-correlation coefficient maximum was ≥0.8. This approach
differed slightly for Helmholtz resonance events, as the first (i.e. maximum) peak in

the synthetic waveform is an overestimation due to the assumption the hole radius in

the bubble membrane is instantaneously reached (Vergniolle and Caplan-Auerbach,

2004). Therefore, we measured synthetic peak-to-peak pressures by ignoring the first

‘peak’ in the waveform. For each picked bubble event, this method produces a subset

of synthetic waveform matches from which we use the median and median absolute
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deviation values to estimate best-fit bubble parameters and their variability, respec-

tively. This approach results in non-unique solutions for each picked bubble event

but these estimations fully explore the model space and may provide insights into

changes in bubble source parameters over time.

4 Results

Due to brush fires forcing a temporary removal of the array, as well as technical issues

(section 3.1), we cannot present a continuous acoustic record of the Fagradalsfjall

lava fountain activity through all of May 2021. Here we focus on two time periods

and present key observations and analysis from each: 2–8 and 17–24 May; hereafter

we will refer to each period as ‘early’ and ‘late’ May, respectively.

4.1 General observations

Acoustics recorded during early and late May indicate distinct differences in lava

fountaining activity (Fig. 2) with longer events in the former time period relative

to the latter. In general, eruptive acoustics appear with high amplitudes relative to

the background activity with peak amplitudes generally occurring at the midpoint

or end of each lava fountain event. Acoustic amplitudes in early May generally peak

at ≤10Pa (Fig. 2a), whereas amplitudes in late May reached up to and over 20Pa

(Fig. 2c). The frequency content of each fountaining event was generally broadband

and may be described as acoustic tremor (Fig. 2b, d) with peak frequencies within

0.5–2.5Hz.

Array processing results indicate broad fluctuations in lava fountaining activity

(Fig. 3). In all, we detected 609 and 1087 lava fountaining events in early and late

May, respectively, corresponding to an average lava fountain rate of ∼4.2 and ∼6
events per hour. Event durations in early May generally followed a downward trend,

falling from <1000 s down to ∼300 s (Fig. 3a). A break in this trend occurred on early

5 May, when several events occurred with durations up to <2000 s. Simultaneously,

repose intervals followed a generally increasing trend, rising from <100 to∼300 s (Fig.
3b). One notable feature is an apparent diurnal variation in repose intervals (and in

durations to a lesser degree), with lower values appearing daily at 00:00–06:00 UTC.

We observe an apparent correlation with wind velocities recorded at the eruption site

(Fig. S1 in supplementary materials) suggesting reduced signal-to-noise ratios due to

wind noise; lower signal-to-noise ratios increase the apparent time interval between

lava fountain events. For late May, lava fountaining event durations are shorter and
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Fig. 2 Examples of acoustic waveforms (a, c) and their respective frequency spectrograms
(b, d) recorded during lava fountain sequences on 5 May (a,b) and 18 May (c,d). Dotted
lines in panels a and c delineate time periods detailed in Figs. 4–7.

are somewhat more stable with only a slight downward trend from 200 to 100 s (Fig.

3d). Repose intervals between events are longer, fluctuating between 300 to 400 s

length, but show no clear indication of any diurnal fluctuations (Fig. 3e). Larger

acoustic amplitudes in late May (Fig. 2c) have likely reduced the impact of wind

noise on signal-to-noise ratios. Estimated relative acoustic energies during early May

show a rising trend in energies over time, from an average of 6.7Pa2·s to 25.8Pa2·s
(Fig. 3c). This latter value was sustained on late 17 May, but power levels became

more erratic before technical issues affected the sensors at the array (Fig. 3f). Higher

relative acoustics energies of up to 50Pa2·s were estimated after the sensor issues

were resolved.

Close inspection of acoustics recorded during individual lava fountaining events

and direct comparisons with seismicity generated by the same events indicates a

complex activity sequence (Fig. 4). In both early and late May, acoustics and seis-

micity generated during lava fountain events appear almost simultaneously (Fig. 4a,

c, e and g). Due to the emergent nature of their onsets, it is challenging to quan-

tify whether there is any significant time lag between the acoustics and seismicity.
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Fig. 3 Durations (a,d) and repose intervals (b,e) of lava fountain events, and relative acous-
tic energies (c,f) for 10 s detection window during two time periods: (a-c) 2–8 May, (d-f)
17–25 May.

The first stage of each fountain event is defined by a sustained acoustic tremor with

frequencies peaking at <2.5Hz (Fig. 4a,b, e and f). As noted previously, the high-

est acoustic amplitudes are associated with impulsive events with peak frequencies

ranging up to 3Hz; we term these events ‘bubble bursts’ and describe them in detail

below (section 4.3). One distinct difference between events during early and late May

is the transition from the tremor to the bubble bursting. Acoustics in early May

indicate a more sustained period of tremor for several minutes with multiple concur-

rent high amplitude bubble bursting events, followed by a rapid decrease in tremor

and a sequence of impulsive events with generally decreasing amplitudes (Fig. 4a,

b). In late May, the tremor stage is curtailed and is rapidly replaced by diminish-

ing bubble bursting events (Fig. 4e, f). Seismic amplitudes and frequencies display a

distinct difference with the acoustics in both early and late May (Fig. 4c, d, g and

h). Amplitudes generally reached a peak in the first stage of the fountaining with

slightly reduced amplitudes sustained for most of the fountaining event, before con-

cluding with a second peak followed by gradual decrease to background levels (Fig.

4c, g). Notably, the second amplitude peak in seismicity appears after the conclusion

of the acoustic tremor during each fountaining event. The frequency content of the

seismicity during each fountaining event indicates faint harmonic tremor, with peaks

appearing at ∼2.5, ∼5, and ∼7.5Hz (Fig. 4d); these bands are not clear during foun-

taining events in late May. The distinct acoustic ‘bubble-burst’ events do not appear
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clearly in the seismic data, although some peaks in the seismic ‘coda’ in early May

could be related to this activity.

Fig. 4 Detailed view of acoustic (a, e) and seismic data (c, g) and their respective frequency
spectrograms (b, f, d, h) recorded during lava fountain events on 05 (a-d) and 18 May (e-h).
Acoustic data was recorded by one microphone of the array, and seismic data was recorded
by a broadband sensor at MER (Fig. 1)

Further insights into the lava fountaining activity can be gleaned by comparing

the acoustic and seismic recordings with the lava fountain heights estimated from

webcam images (Fig. 5). To aid the comparison, we have plotted smoothed absolute

acoustic and seismic amplitudes using a 10 s rolling window. Lava fountain heights

during each time period of analysis generally display two different behaviours. In

early May, lava fountaining quickly rises to reach a peak at 100–150m in the first

stage before a period of sustained low level fountaining fluctuating at 20–50m (Fig.

5a). In late May, lava fountain heights quickly reach their peak values at 100–130m

but are instead followed by a rapid decrease down to low levels without any period

of sustained fountaining (Fig. 5b). In both time periods, fountaining appears to

commence almost simultaneously with the emergence of acoustic and seismic activity.

However, the peak lava fountaining does not correlate with the highest amplitudes

of the seismo-acoustic wavefield. Interestingly, decreases in lava fountain heights at

the end of each event are simultaneous with decreases in acoustic amplitudes, but

seismicity generally reach a peak amplitude following a time delay of <60 s.
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Fig. 5 Estimated lava fountain heights (orange area), mean absolute acoustic pressures
(blue) and mean absolute seismic velocities (red) for two time periods on 05 May (a) and 18
May (b). Also marked are the estimated cone height on the day of each time period (black
dotted line): 276m a.s.l. for 05 May, and 300m a.s.l for 18 May.

4.2 Turbulent acoustic tremor

The onset of each lava fountain event in May is defined by the emergence of acoustic

tremor with peak frequencies <5Hz (Fig. 4a, b, e and f). Here we present results

from systematically quantifying the differences between the acoustic spectra and

FST/LST similarity spectra (Figs. 6, 7; see Figs. S2–S5 in supplementary material

for more examples). The misfit difference spectrograms indicate relatively strong

LST turbulence before and after each lava fountain event (Fig. 6c, 7c). This is to be

expected when background noise is typically comprised of turbulence generated by

wind (e.g. Raspet and Webster, 2015). During each lava fountaining event, we find a

generally bimodal distribution in the misfit spectra: FST is more dominant at >2Hz,

and LST is more dominant below. One notable departure from this distribution is

the appearance of more dominant LST spectra at frequencies >5Hz centred on the

time of peak lava fountain heights during each event (Fig. 6c, 7c). FST spectra

remained dominant in a small ‘notch’ at frequencies from 2–5Hz. At frequencies

<2Hz, we observe complex fluctuations in the peak LST spectra during each event,

with apparent upward ‘gliding’ during the bubble burst events (e.g. 17:12:15–17:13:20

in Fig. 7c).
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Fig. 6 Spectral quantification for a lava fountain event on 05 May. (a) Acoustic data
as recorded at the array. (b) Frequency spectrogram for the data shown in panel a. Peak
frequency through time is highlighted through time by red dots for each time window where
max dB >75. Note that the spectrogram was built using longer time windows than those in
Figs. 2 and 4, and the y-axis is plotted with a log-scale. (c) Misfit difference spectrogram
plot showing times and frequencies of RMSD for FST (blue) and LST (red). Also plotted
are measured lava fountain heights in black and red, with the latter colour indicating if this
exceeds the measured lava cone height.

Fig. 7 Spectral quantification for a lava fountain event on 18 May. See Fig. 6 caption for
details on panels.

4.3 Bubble burst modelling

The latter period of each lava fountain event is defined by sequences of impulsive

bubble burst acoustics (Fig. 4). Bubble bursts during each time period of analysis

was dominated by m-shaped waveforms linked to bubble oscillations (Fig. 8). In
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comparison, events with Helmholtz resonance occur relatively rarely but a notable

sequence was observed at 05:00 UTC on 05 May (Fig. 9).

Through inspection of the acoustic recordings, we manually picked 105 and 72

bubble burst events on 05 and 18 May, respectively. For events picked in early

May, peak-to-peak amplitudes ranged from 0.42–23.0Pa with 1.10–4.29Hz peak fre-

quencies. In comparison, events in late May had peak-to-peak amplitudes ranging

from 0.69–36.54Pa and 0.75–2.13Hz peak frequencies. Across both time periods, we

matched a subset of synthetic waveforms to all but 4 events in late May, with a

minimum of 36, maximum of 4,389, and a median of 1573 matches (Fig. 8i - l; see

Figs. S6 and S7 in supplementary material for more examples). Overall, the matched

model parameters tended to span the boundary conditions without clustering near

end-member values, indicating an acceptable range of initial conditions. However, we

find poorly constrained bubble lengths, with median values falling at the midpoint of

the boundary conditions with large median absolute deviations (Fig. 8b, f). Never-

theless, we find narrow distributions of initial radii (Ro; Fig. 8a, e) and overpressures

(∆P ; Fig. 8d, h), therefore we interpret these parameters as well constrained. In

early May, the initial radii range from 0.3 to 3.3m (Fig. 8a), and overpressures range

from 12 to 63 kPa (Fig. 8d). Despite the poor constraint on bubble lengths, we esti-

mate bubble volumes using equation (A2) and find a range of 45–3017m3 (Fig. 8c).

By comparison for late May, the initial radii tend to be larger with values from 0.7

to 4.5m (Fig. 8e), overpressures are approximately similar with estimations from 13

to 56 kPa (Fig. 8g), and volumes are larger at 162–4900m3 (Fig. 8h).

As noted previously, bubble burst events displaying Helmholtz resonance wave-

forms are relatively rare. However, one sequence of bubble bursts at 05:48 UTC on

05 May was notable for their apparent resonant nature with upward frequency ‘glid-

ing’ (Fig. 9a, b). This particular sequence occurred immediately after a time interval

which featured one of the longest fire fountain events and one of the tallest lava foun-

tain events observed (Fig. S8 in supplementary material). We manually picked 14

bubble burst events from the sequence which had 0.48–10.50Pa peak-to-peak ampli-

tudes and 1.92 to 4.49Hz peak frequencies. We matched a subset of synthetics to

all events, finding 20–1996 matches with a median of 147 (Fig. 9g, h; see Fig. S9 in

supplementary material for all events). Similar to results of modelling bubble oscilla-

tion events, the matched model parameters tended to span the boundary conditions

without clustering near end-member values, indicating an acceptable range of initial

conditions. Manual inspection of the matched synthetics relative to the real wave-

forms finds a good match for the second to fourth peaks after the first, but poor
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Fig. 8 Results of modelling oscillating events on May 5 and 18. (a - d) Median (blue dots)
and modes (red triangles) of estimated radius, bubble length, bubble volume, and bubble
overpressure, respectively, for each picked bubble burst on May 5. Error bars on the median
values are the median absolute deviation values. (e - h) Same as panels a - d, except for events
on May 18. Horizontal red line in panels a and e indicate upper conduit radius estimated
from drone images on 5 May (Jöel Ruch, pers. communication). (i - l) Four examples of
modelled oscillating bubble bursts (red lines) from May 5 (i and j) and May 18 (k and l),
along with their matched synthetics (grey line) and the median synthetic waveform (green
dashed line). The time of each example is noted in the bottom left, and the number of
matched synthetics in the bottom right.

matching thereafter (e.g. Fig. 9g, h). We find narrow distributions of hole radii (Rhole;

Fig. 9c) and overpressures (∆P ; Fig. 9f), therefore we interpret these parameters as

relatively well constrained. Bubble lengths (L) do not tend to fall at the midpoint

of the boundary conditions, but the median absolute deviations are still large (Fig.

9d). We find radii ranging from 1.7 to 4.1m and bubble lengths ranging from 42.5 to

162.5m. Using equation (A19), we estimate volumes of 1489.7–6265.8m3 (Fig. 9e).

Lastly, overpressures ranged from a maximum of 3800Pa down to 150Pa at the end

of bubble sequence.
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Fig. 9 Results of modelling bubble bursts with Helmholtz resonance on May 5. (a) Acoustic
recording of sequence of bubble bursts displaying Helmholtz resonance on morning of May 5.
(b) Frequency spectrogram of acoustic waveform in panel a. Also plotted are peak frequencies
of bubbles manually picked from sequence (red dots). (c - f) Median (blue dots) and modes
(red triangles) of estimated radius, bubble length, bubble volume, and bubble overpressure,
respectively, for each bubble burst in the sequence. Error bars on the median values are
the median absolute deviation values. Horizontal red line in panel c indicates upper conduit
radius estimated from drone images on 05 May (Jöel Ruch, pers. communication). (g, h)
Two examples of bubble bursts from the sequence in panel a (red lines), along with their
matched synthetics (grey line) and the median synthetic waveform (green dashed line). The
time and number of matched synthetics for each example is noted in the top and bottom
right, respectively.

5 Discussion

The lava fountains observed at Fagradalsfjall were exceptional in terms of event

lengths and their recurrence intervals. Previously documented lava fountains at Etna

and Kı̄lauea were more prolonged (e.g. up to multiple months; Patrick et al, 2019;

Lyons et al, 2021) and/or had longer repose intervals (e.g. days to weeks; Parfitt,

2004; Vergniolle and Ripepe, 2008). Acoustic data recorded during the lava foun-

tains at Fagradalsfjall required multiple analytical tools to help discern the complex

sequence of activity during each event.
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Results from least-squares array processing found nearly 1700 individual lava

fountaining events across two time periods of analysis in early and late May (Fig. 3).

This amount approximately correlates with analysis carried out using seismic data

(Eibl et al, 2022). The duration and repose intervals along with their broad fluctua-

tions over time also correlate with the seismic analysis but we see an apparent diurnal

cycle in early May due to lower signal-to-noise ratios from wind noise. Estimated rel-

ative acoustic energies in early May show an upward trend (Fig. 3c) that may reflect

changes in eruptive activity over time. Analysis of acoustics from the 2018 eruption

at Kı̄lauea have suggested that increases in acoustic energies correlate with increases

in lava effusion rates over long time-scales (Patrick et al, 2019; Lyons et al, 2021).

Time-averaged lava discharge rates compiled over the whole eruption suggest there

was a rapid increase in late April and early May (Pedersen et al, 2021). Therefore we

suggest the increase in relative energy in early May may be an approximate indicator

of increases in lava effusion rates at Fagradalsfjall.

Closer inspection of acoustics generated during individual lava fountains suggest

a general sequence of activity during each event: acoustic tremor is followed by a

transition into and eventually superseded by impulsive bubble bursting (i.e. Strom-

bolian) activity (Fig. 4). The apparent simultaneous increase of acoustic and seismic

activity at the onset of each lava fountain event suggests both wavefields are, at first,

generated by activity at or near the surface. However, the wavefields diverge at the

end of each lava fountain event when a second peak seismic amplitude appears with

a small time lag after acoustic amplitudes decline (Figs. 4, 5). The lack of higher

acoustic amplitudes at this time suggests a sub-surface process with no atmospheric

coupling. It is not clear what this process may be and further detailed analysis of

seismicity is beyond the ambit of this article. Nevertheless, it is clear that while seis-

mic data can be used to visualise overall trends in lava fountaining (e.g. Eibl et al,

2022), it may overestimate activity durations and underestimate repose intervals due

to ‘overshooting’ of vent activity (Fig. 5). Another notable observation was peak

acoustic amplitudes correlating with Strombolian activity instead of peak lava foun-

taining. Fluctuations in atmospheric pressure recorded by sensors at distance from a

volcanic vent have been directly related to acoustic power, which depends strongly on

the source radiation mechanism (Woulff and McGetchin, 1976). Three mechanisms

are recognised: monopoles can be envisioned as an isotropically expanding source

(i.e. an explosion), dipoles are equivalent to directional gas flux interacting with solid

walls, and quadrupoles correspond to turbulent noise (i.e. a jet engine). Woulff and

McGetchin (1976) use empirical constants on the order of 1, 10-2 and 10-5 for each
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source, respectively. Thus, less acoustic power and lower acoustic amplitudes will be

generated during the jetting phase (i.e. quadrupole) than the Strombolian phase (i.e.

monopoles and/or dipoles) of each lava fountain event.

Jet noise similarity spectra fitting highlighted a complex distribution of FST and

LST frequencies during each lava fountain event (Figs. 6, 7), with the former domi-

nating at >2Hz. The complexity of the acoustic wavefield is further highlighted when

compared with analysis on acoustic data recorded during sustained lava fountain-

ing at Kı̄lauea in 2018 (see Fig. 5 in Gestrich et al, 2021). While the link between

changes in spectral properties of jet noise to eruption dynamics is an ongoing area

of research (Gestrich et al. in prep.), here we see a potential connection with lava

fountain heights. We noted the appearance of stronger LST turbulence at frequen-

cies >5Hz centred on the peak lava fountain heights during each event (Fig. 6c,

7c). LST sound radiation is highly directional, with a narrow cone-shaped wavefield

pattern centred on the vent, but this cone may be enlargened for higher tempera-

ture and higher Mach number jets (Matoza et al, 2009; Viswanathan, 2009). The

data presented here hints at an interaction between the cone morphology and the

resulting turbulent wavefield, but we are wary in presenting an interpretation. Vol-

canic jetting is extremely complex and poorly understood compared to laboratory

jets and modelling the complex wavefield generated during each fountaining event

and how it may be affected by the growing cone is beyond the scope of this arti-

cle. We also noted an upward ‘gliding’ feature in LST frequencies (<2Hz) during

the Strombolian events after each lava fountain event (e.g. Fig. 7c). We hypothesise

that minor gas jetting occurred immediately after each Strombolian explosion, with

higher frequencies caused by smaller slug volumes (Fig. 8c, g).

Inspection of the Strombolian explosions after each lava fountain event in early

and late May revealed two kinds of bursting mechanism: bubble oscillation (Fig. 8)

and Helmholtz resonance (Fig. 9). If we assume the Rhole parameter for the latter

is approximately equivalent to Ro for the former, then the values of bubble radii

for each type do roughly agree with each other on 5 May. These radii fall within

the range of values found for Strombolian explosions at other volcanoes, including

Stromboli, Etna, and Shishaldin (Vergniolle and Brandeis, 1996; Vergniolle et al,

2004; Vergniolle and Ripepe, 2008; Cannata et al, 2009). However, we find a poor

constraint on bubble lengths with the bubble oscillation model with median values

around the midpoint between bounds used for generating synthetics. If we instead

look at the matching bubble length modal values, we find smaller values at 40–70m

which fall into the upper range of values found in previous studies. On the contrary,
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overpressures are small compared to previous studies, with peak values at least one

order of magnitude lower than the minimum values found at Shishaldin (Vergniolle

et al, 2004). Analytical modelling of Strombolian eruptions finds a non-linear rela-

tionship between gas overpressure within slugs, and the total volume of the slug as

well as thickness of magma between the slug and conduit walls (Del Bello et al, 2012).

We note that estimated bubble volumes here are also relatively small compared to

the previous studies, which may explain the low gas overpressure estimates. Even so,

overpressures for Helmholtz resonance events are small relative to those for bubble

oscillation events (Fig. 9f). Helmholtz resonance can also occur within an air cav-

ity above the magma (e.g. Fee et al, 2010b; Goto and Johnson, 2011). We suggest

the relatively large estimated bubble lengths (Fig. 9d) indicate an unusually deep

magma level in the upper conduit and resonance occurred in an air cavity above the

Strombolian explosions.

Laboratory experiments have shown that gas slugs occupy a large portion of the

upper conduit with a thin magma film between the slug and conduit walls (e.g. James

et al, 2006; Del Bello et al, 2012), therefore the maximum estimated bubble radii

should be only slightly less than the conduit radius at the burst point (i.e. magma

surface). Images of the vent captured by drone on the morning of 5 May suggested

an upper conduit radius of approximately 3.5m (Joël Ruch, pers. communication).

Estimated bubble radii for both bubble oscillation and Helmholtz resonance models

on 5 May fall beneath or close to this value (Fig. 8a, 9c). We also found larger

maximum bubble radii on 18 May, suggesting an increase in conduit radius during the

lava fountaining. This is supported by a steady increase in seismic tremor amplitudes

during May 2021 (Fig. 4c, g; Eibl et al, 2022). Mechanical erosion of upper conduit

and vents have been observed to affect acoustic frequencies during eruptions (e.g. Fee

et al, 2017; Watson et al, 2020), therefore we surmise the same process occurred at

Fagradalsfjall. We also suggest that a wider conduit radius in late May (Fig. 8a, e)

could be a factor in explaining the shorter lava fountaining durations (Fig. 2c). Linear

acoustic theory suggests a linear relationship between acoustic amplitudes and mass

eruption rates (Woulff and McGetchin, 1976). Higher acoustic amplitudes recorded

in late May relative to early May (Figs. 2, 4) therefore suggest higher fluxes of gas

during each lava fountain event in the later period. Thus, a wider conduit allows

similar or larger quantities of gas to migrate en masse to the surface in a shorter

amount of time.

Constraints on the upper conduit dimensions from Strombolian explosion mod-

elling can, in turn, be used to help define the Strouhal number St which connects
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the peak frequency Fp, jet diameter Dj and jet velocity Uj via St = fpDj/Uj . Fre-

quencies during peak lava fountaining ranged from 0.5 to 2Hz, peaking at 1–2Hz

(Figs. 6b, 7b). Lava fountain heights H can be related to gas velocity v at the vent

by v =
√

2gH (Wilson, 1980). Peak lava fountain heights during early and late May

ranged from 110 to 145m (Fig. 5), giving peak gas velocities (i.e. jet velocities) of 46.4

to 53.3 m·s-1. Together with the maximum bubble radii found in early and late May

(Fig. 8), we estimate St of 0.26–0.43 for the lava fountain sequence at Fagradalsfjall.

These represent maximum values as we likely underestimate lava fountain heights

since the camera image angle could not see the vent base (Fig. 1b). Nevertheless,

these estimations fall within the range of St values previously estimated from vol-

canic jetting (Matoza et al, 2009; McKee et al, 2017), but lower than estimated

for Stromboli volcano (1.2–1.8; Taddeucci et al, 2014). However, we note that peak

acoustic frequencies at Stromboli were measured up to 305Hz, hence the high St

values. Finally, we note that peak acoustic frequencies during each event (red dots

in Figs. 6b, 7b) weakly correlate with lava fountain heights, suggesting a relatively

constant St value on short-term intervals.

6 Conclusions

Acoustic recordings can provide important constraints on the eruptive dynamics and

source parameters of volcanic eruptions, but data from basaltic fissure eruptions

with Hawaiian-style lava fountains are relatively rare. Here we present an account

of acoustic data recorded by a sensor array during the lava fountain sequence of

the 2021 Fagradalsfjall eruption in Iceland with analysis focused on activity in early

and late May. We find that the array successfully tracked variations in event dura-

tions and repose intervals over time but was affected by wind noise. Relative acoustic

energies of coherent acoustic detections in early May showed an upward trend in

values which may be linked to increasing effusion rates. Detailed inspection of acous-

tics, and comparisons with seismic data and lava fountain height measurements,

revealed a dynamic eruptive sequence during each event: acoustic tremor during

peak lava fountaining was followed by a transition to Strombolian activity with dis-

tinct high-amplitude impulsive waveforms. We observe a divergence between acoustic

and seismic amplitudes during each event, with the latter appearing to overestimate

lava fountain durations. Jet noise similarity spectra fitting finds complex distribu-

tions of turbulent acoustics during each event, with changes of spectral shape and
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frequency correlated with fountain height. Strombolian explosions are mostly com-

posed of events that can be modelled by oscillations of bursting gas slugs at the

top the magma column, with a minor number of events exhibiting Helmholtz res-

onance behaviour instead. Modelling of each source type finds maximum bubble

radii of <3.5m in early May and <4.5m in late May, suggesting a widening of the

upper conduit during the lava fountain activity. Finally, we propose that a wider

conduit in late May, together with higher acoustic amplitudes, indicates higher gas

fluxes through the conduit which resulted in briefer lava fountain events. Overall,

this study demonstrates the value in incorporating acoustic microphones into future

sensor deployments at basaltic fissure eruptions in Iceland and elsewhere through

providing important constraints on eruption dynamics and upper conduit dimensions

that may not be feasible otherwise.

Supplementary information. Supplementary materials include Figures

S1–S9, a detailed description of lava fountain height estimation methodology, and a

video of a lava fountain event on 11 May.
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Appendix A Bubble modelling

A.1 Bubble oscillation model

The general equation for an oscillating bubble relates the kinetic energy exchange

between a thin bubble cap and potential energy of the gas (Vergniolle and Brandeis,

1996):

0 = ε̈+

(
12µl
ρlR2

eq

)
ε̇+

Patm
ρlReqheq

[
1−

(
Veq
Vg

)γ]
(1 + ε)2 (A1)

where Req and Veq are the bubble equilibrium radius and volume, respectively, heq is

the bubble membrane thickness at equilibrium (0.15 m), Patm is atmospheric pressure

(105 Pa), ρl is the liquid density (2700 kg.m-3), µl is the liquid viscosity (100 Pa·s),
and Vg is equal to:

Vg =
2πR3

3
+ πR2

oL (A2)

where Ro is the initial radius of the bubble; Vg is a function of the dimensionless bub-

ble radius ε. Heat transfer within large bubbles is adiabatic (Plesset and Prosperetti,

1977), therefore internal bubble pressure will follow variations in volume with a ratio

of specific heat γ, equal to 1.1 for hot gases (Lighthill, 1978). Bubble radius R can be

described by its variation from the equilibrium radius Req (Vergniolle and Brandeis,

1996):

R = Req(1 + ε) (A3)

where:

Req =

(
3

2

) 1
3

[(
2R3

o

3
+R2

oL

)(
1 +

∆P

Patm

) 1
γ

−R2
oL

] 1
3

(A4)

in which L is the length of the cylindrical bubble within the conduit, and ∆P is the

source pressure, or amount the bubble initially at rest at the magma-air interface is

suddenly overpressured.

The pressure recorded at the sensor pac−pair at time t is (Vergniolle and Brandeis,

1996):

pac − pair =
[
2Ṙ2(t− r/v) +R(t− r/v)R̈(t− r/v)

] ρairR(t− r/v)

r
(A5)

where r is the source-receiver distance (0.8 km), v is sound velocity in air (340

m·s-1), R is the bubble radius, and ρair is the air density (1.1 kg.m-1). Therefore,

calculation of synthetic pressure waveforms primarily depends on only three variables:

∆P , Ro, and L. A full technical discussion of the model can be found in Vergniolle

and Brandeis (1996).
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A.2 Helmholtz resonance modelling

During Helmholtz resonance, sound is produced by the motion of gas rushing from a

small tube into an infinite space, where the tube length is equal to the thickness of the

liquid layer (i.e. a hole in the bubble membrane). Sound emission is approximated by

that of a piston mounted on an infinite baffle, producing sound as a monopole source

in the far field (Spiel, 1992). For a piston emitting sound in a half-space (Vergniolle

and Caplan-Auerbach, 2004):

pac − pair =
ρair ξ̈πR

2
hole

2πr
(A6)

where ξ is the displacement of air. If the resonator dimensions are small compared

to the acoustic wavelength, the behaviour of an undriven Helmholtz resonator is:

0 = mhelmξ̈ + κhelmξ̇ + shelmξ (A7)

where mhelm, κhelm, and shelm are the mass, the resistance coefficient, and the

stiffness coefficient of the oscillator, respectively. These are defined as:

mhelm = ρairεShole (A8)

κhelm =
ρairω

2S2
hole

2πv
(A9)

shelm =
ρairv

2S2
hole

Vhelm
(A10)

where Shole is the hole area, Vhelm is the volume of the resonator, and ε is the effective

length of the orifice. The oscillator effective length is longer than the geometrical

length (i.e. the bubble membrane thickness, heq) because some of the air beyond the

hole also moves (Spiel, 1992). The effective length ε corresponds essentially to end

corrections of a flanged piston which are difficult to estimate since the behaviour of a

gas about the hole is nonlinear (Vergniolle and Caplan-Auerbach, 2004). Spiel (1992)

suggests a value of 8Rhole/3π ≤ ε ≤ 16Rhole/3π, therefore we use ε = 4Rhole/π as a

representative value.

A damped harmonic solution can be defined as:

ξ = Ae−t/τ cos(ωt+ φ) (A11)

ξ̇ = −Ae−t/τ [ω sin(ωt+ φ) + cos(ωt+ φ)/τ ] (A12)

ξ̈ = −ω2Ae−t/τ cos(ωt+ φ) (A13)
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where A and φ are arbitrary constants to be determined by initial conditions. The

relaxation time τ and the radian frequency ω are:

τ =
2mhelm

κhelm
(A14)

ω =

√
ω2
0 −

1

τ2
(A15)

where ω0 is the radian frequency without damping, defined as (Vergniolle and Caplan-

Auerbach, 2004):

ω0 = v

√
Shole
εVhelm

(A16)

The initial force on the mass of resonating air will be ∆PShole, the initial speed

of the mass will be zero, and the mass of the rupturing bubble membrane will be

ignored. These conditions lead to:

φ = arctan

[
−1

ωτ

]
(A17)

A = − ∆P

ρairεω2 cosφ
(A18)

Finally, the following equations given by Temkin (1981) and Spiel (1992) are

adapted for a cylindrical bubble of length L with a volume Vhelm:

Vhelm =
2πR3

3
+ πR2L (A19)

Shole = πR2
hole (A20)

where Rhole is the radius of the hole, which is assumed to be set at its value instanta-

neously and remains constant over time. Ultimately, calculation of synthetic pressure

waveforms from Helmholtz resonance primarily depends on only three variables: ∆P ,

Rhole, and L.
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