[1] M. Abecassis-Wolfovich, H. Rotter, M.V. Landau, E. Korin, A.I. Erenburg, D. Mogilyansky, E. Garshtein, Texture of chromia aerogels and structure of their nanocrystals, in: S.-E. Park, R. Ryoo, W.-S. Ahn, C.W. Lee, J.-S. Chang (Eds.) Studies in Surface Science and Catalysis, Elsevier. 247-250 (2003) .
[2] E. Sourty, J.L. Sullivan, M.D. Bijker, Chromium oxide coatings applied to magnetic tape heads for improved wear resistance., Tribology International. 36, 389-396 (2003).
[3] A. Ertani, A. Mietto, M. Borin, S. Nardi, Chromium in Agricultural Soils and Crops: A Review, Water, Air, & Soil Pollution. 228, 190 (2017).
[4] V. Velma, S.S. Vutukuru, P.B. Tchounwou, Ecotoxicology of hexavalent chromium in freshwater fish: a critical review, Rev Environ Health. 24, 129-145 (2009) .
[5] P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metal toxicity and the environment, Exp Suppl. 101, 133-164 (2012).
[6] M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew, K.N. Beeregowda, Toxicity, mechanism and health effects of some heavy metals, Interdiscip Toxicol. 7, 60-72 (2014).
[7] L.-L. Li, X.-Q. Feng, R.-P. Han, S.-Q. Zang, G. Yang, Cr(VI) removal via anion exchange on a silver-triazolate MOF, Journal of hazardous materials. 321, 622-628 (2017).
[8] H. Peng, Y. Leng, Q. Cheng, Q. Shang, J. Shu, J. Guo, Efficient Removal of Hexavalent chromium from Wastewater with Electro-reduction. , Processes. 7, 41 (2019).
[9] A.K. Golder, A.K. Chanda, A.N. Samanta, S. Ray, Removal of hexavalent chromium by electrochemical reduction–precipitation: Investigation of process performance and reaction stoichiometry, Separation and Purification Technology. 76, 345-350 (2011).
[10] Y. Zhu, H. Li, G. Zhang, F. Meng, L. Li, S. Wu, Removal of hexavalent chromium from aqueous solution by different surface-modified biochars: Acid washing, nanoscale zero-valent iron and ferric iron loading, Bioresour Technol. 261, 142-150 (2018).
[11] A. Demir, M. Arisoy, Biological and chemical removal of Cr(VI) from waste water: cost and benefit analysis, J Hazard Mater. 147, 275-280 (2007).
[12] X. Wang, S.O. Pehkonen, A.K. Ray, Removal of Aqueous Cr(VI) by a Combination of Photocatalytic Reduction and Coprecipitation, Industrial & Engineering Chemistry Research. 43, 1665-1672 (2004).
[13] H.W. Ma, J.F. Shen, M. Shi, X. Lu, Z.Q. Li, Y. Long, N. Li, M.X. Ye, Significant enhanced performance for Rhodamine B, phenol and Cr(VI) removal by Bi2WO6 nancomposites via reduced graphene oxide modification, Applied Catalysis B: Environmental. 121, 198-205 (2012).
[14] A. Pandikumar, R. Ramaraj, Titanium dioxide-gold nanocomposite materials embedded in silicate sol-gel film catalyst for simultaneous photodegradation of hexavalent chromium and methylene blue, Journal of hazardous materials. 203-204, 244-250 (2012).
[15] R. Acharya, B. Naik, K. Parida, Cr(VI) remediation from aqueous environment through modified-TiO(2)-mediated photocatalytic reduction, Beilstein journal of nanotechnology. 9 1448-1470 (2018).
[16] A. Fujishima, X. Zhang, D.A. Tryk, TiO <SUB>2</SUB> photocatalysis and related surface phenomena, Surface Science Reports. 63, 515 (2008).
[17] D.C. Onwudiwe, O.A. Oyewo, U. Atamtürk, O. Ojelere, S. Mathur, Photocatalytic reduction of Cr(VI) using star-shaped Bi2S3 obtained from microwave irradiation of bismuth complex, Journal of Environmental Chemical Engineering. 8, 103816 (2020).
[18] F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Yuan, Photoluminescence properties of SnO2nanoparticles synthesized by sol-gel method, J. Phys. Chem. B. 108, 8119-8812 (2004).
[19] T.L. Villarreal, G. Boschloo, Hagfeldt., Nanostructured zinc stannate as semiconductor working electrodes for dye-sensitized solar cells, J. Phys. Chem. C. 111, 5549-5556 (2007).
[20] Z.L. Wang, Nanostructures of zinc oxide, Mater Today. 7, 26–33 (2004) .
[21] R. Wahab, Y.S. Kim, D.S. Lee, J.M. Seo, H.S. Shin, Controlled synthesis of zinc oxide nanoneedles and their transformation to microflowers, Sci Adv Mater. 2, 424–435 (2010).
[22] H.J. Zhai, W.H. Wu, F. Lu, H.S. Wang, Effects of ammonia and CTAB on morphologies of ZnO nano-and micromaterials under solvothermal process, Mater Chem Phys. 112, 1024–1028 (2008).
[23] R. Noonuruk, N. Vittayakorn, W. Mekprasart, J. Sritharathikhun, W. Pecharapa, Journal of Nanoscience and Nanotechnology. 15, 2564 (2015) .
[24] S.K. Tammina, B.K. Mandal, N.K. Kadiyala, Photocatalytic degradation of methylene blue dye by nonconventional synthesized SnO2 nanoparticles. 10 (2018) Environmental Nanotechnology, Monitoring & Management 10, 339-350 (2018).
[25] X. Fuku, K. Kaviyarasu, N. Matinise, M. Maaza, Punicalagin green functionalized cu/Cu2O/ZnO/CuO nanocomposite for potential electrochemical transducer and catalyst, Nanoscale Res. Lett. 11, 9-14 (2016).
[26] C.M. Magdalane, K. Kaviyarasu, J.J. Vijaya, C. Jayakumar, M. Maaza, B. Jeyaraj, Photocatalytic degradation effect of malachite green and catalytic hydrogenation by UV–illuminated CeO2/CdO multilayered nanoplatelet arrays: investigation of antifungal and antimicrobial activities, J. Photochem. Photobiol. B Biol. 169, 110-123 (2017) .
[27] J. Hu, Biosynthesis of SnO2 nanoparticles by fig (Ficus carica) leaf extract for electrochemically determining Hg(II) in water samples, Int. J. Electrochem. Sci. 10, 10668-10676 (2015).
[28] P.M.L. Jaeger, F.N. Hepper, A review of the genus Solanum in Africa, In: Solanaceae, biology and systematics. 41–55 (1986).
[29] K.O. Bonsu, D.A. Fontem, G.O. Nkansah, I.R. N., E.O. Owusu, R.R. Schippers, Diversity within the Gboma eggplant (Solanum macrocarpon), an indigenous vegetable from West Africa., Ghana J. Horticulture. 1, 50–58 (2002).
[30] G. Niño-Medina, Structure and content of phenolics in eggplant (Solanum melongena) - a review, South African journal of botany. 111,161-169 (2017).
[31] A. Djouadi, T. Lanez, C. Boubekri, . Evaluation of antioxidant activity and polyphenolic contents of two South Algerian eggplants cultivars., J. Fundam. Applied Sci. 8, 223-231 (2016).
[32] R. Yuvakkumar, J. Suresh, A.J. Nathanael, M. Sundrarajan, S.I. Hong, Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications, Materials science & engineering. C, Materials for biological applications. 41, 17-27 (2014) .
[33] E.E. Elemike, D.C. Onwudiwe, M. Singh, Eco-friendly Synthesis of Copper Oxide, Zinc Oxide and Copper Oxide–Zinc Oxide Nanocomposites, and Their Anticancer Applications, Journal of Inorganic and Organometallic Polymers and Materials. 30, 400-409 (2020).
[34] Z. Bian, T. Tachikawa, T. Majima, Superstructure of TiO2 crystalline nanoparticles yields effective conduction path ways for photogenerated charges, J. Phys. Chem. Lett. 3, 1422–1427 (2012).
[35] X. Yuan, Y. Wang, J. Wang, C. Zhou, Q. Tang, X. Rao, Calcined graphene/MgAl-layered double hydroxides for enhanced Cr(VI) removal, Chem. Eng. J. 221, 204–213 (2013).
[36] L.F. da Silva, J.C. M’Peko, A.C. Catto, S. Bernardini, V.R. Mastelaro, K. Aguir, C. Ribeiro, E. Longo, UV-enhanced ozone gas sensing response of ZnO-SnO2 heterojunctions at room temperature, Sensors and Actuators B: Chemical. 240, 573-579 (2017).
[37] P. Pascariu, A. Airinei, N. Olaru, L. Olaru, V. Nica, Photocatalytic degradation of Rhodamine B dye using ZnO-SnO2 electrospun ceramic nanofibers Ceram. Int. 42, 6775-6781 (2016).
[38] Y. Li, N. Luo, G. Sun, B. Zhang, L. Lin, H. Jin, Y. Wang, H. Bala, J. Cao, Z. Zhang, In situ decoration of Zn2SnO4 nanoparticles on reduced graphene oxide for high performance ethanol sensor, Ceramics International. 44, 6836-6842 (2018).
[39] W. Ali, H. Ullah, A. Zada, M.K. Alamgir, W. Muhammad, M.J. Ahmad, A. Nadhman, Effect of calcination temperature on the photoactivities of ZnO/SnO2 nanocomposites for the degradation of methyl orange, Materials Chemistry and Physics. 213, 259-266 (2018).
[40] C. Wang, J. Zhao, X. Wang, B. Mai, G. Sheng, P. Peng, J. Fu, Appl. Catal. B: Environ., 39, 269–279 (2002).
[41] C. Wang, X. Wang, B. Xu, J. Zhao, B. Mai, P. Peng, G. Sheng, J. Fu, Photochem. Photobiol. A: Chem. 168, 47–52 (2004).
[42] F. Gu, S.F. Wang, M.K. Lü, G.J. Zhou, D. Xu, D.R. Yuan, Photoluminescence Properties of SnO2 Nanoparticles Synthesized by Sol−Gel Method, The Journal of Physical Chemistry B. 108, 8119-8123 (2004).
[43] H. Mahdhi, Z.B. Ayadi, J.L. Gauffier, K. Djessas, S. Alaya, Effect of sputtering power on the electrical and optical properties of Ca-doped ZnO thin films sputtered from nanopowders compacted target., Opt. Mater. 45, 97-103 (2015).
[44] S.G. Alamdari, M.S. Ghamsari, M.J. Tafreshi, Synthesis , Characterization , and Gas Sensing Properties of In-doped ZnO, in, (2018).
[45] M. Karmaoui, A.B. Jorge, P.F. McMillan, A.E. Aliev, R.C. Pullar, J.A. Labrincha, D.M. Tobaldi, One-Step Synthesis, Structure, and Band Gap Properties of SnO2 Nanoparticles Made by a Low Temperature Nonaqueous Sol–Gel Technique, ACS Omega. 3, 13227-13238 (2018).
[46] H. Mahdhi, S. Alaya, J.L. Gauffier, K. Djessas, B.A. Z., Influence of thickness on the structural, optical and electrical properties of Ga-doped ZnO thin films deposited by sputtering magnetron., J. Alloy. Comp. 695, 697-703 (2017).
[47] F. Zewdu, M. Amare, Determination of the level of hexavalent, trivalent, and total chromium in the discharged effluent of Bahir Dar tannery using ICP-OES and UV–Visible spectrometry, Cogent Chemistry. 4, 1534566 (2018).
[48] H. Wang, S. Zhang, J. Wang, Q. Song, W. Zhang, Q. He, J. Song, F. Ma, Comparison of performance and microbial communities in a bioelectrochemical system for simultaneous denitrification and chromium removal: Effects of pH, Process Biochemistry. 73, 154-161 (2018).
[49] Q. Zhang, X. Zhao, L. Duan, H. Shen, R. Liu, Controlling oxygen vacancies and enhanced visible light photocatalysis of CeO2/ZnO nanocomposites, Journal of Photochemistry and Photobiology A: Chemistry. 392, 112156 (2020).
[50] E. Irani, M. Amoli-Diva, Hybrid adsorption–photocatalysis properties of quaternary magneto-plasmonic ZnO/MWCNTs nanocomposite for applying synergistic photocatalytic removal and membrane filtration in industrial wastewater treatment, Journal of Photochemistry and Photobiology A: Chemistry. 391, 112359 (2020).
[51] R. Aggarwal, G. Arora, Assessment of biosorbents for chromium removal from aqueous media, Materials Today: Proceedings, (2020).
[52] V. Kumar, S.K. Dwivedi, Hexavalent chromium reduction ability and bioremediation potential of Aspergillus flavus CR500 isolated from electroplating wastewater, Chemosphere. 237, 124567 (2019).
[53] S. Ding, A. Li, S. Jiang, Y. Zhou, Q. Wei, W. Zhou, Y. Huang, Q. Yang, T. Fan, Niobium modification effects on hydrodesulfurization of 4,6-DMDBT catalyzed on Ni-Mo-S active sites: A combination of experiments and theoretical study, Fuel. 237, 429-441 (2019).
[54] D. Gavril, A. Georgaka, V. Loukopoulos, G. Karaiskakis, Inverse gas chromatographic investigation of the active sites related to CO adsorption over Rh/SiO2 catalysts in excess of hydrogen, Journal of Chromatography A. 1160, 289-298 (2007).
[55] S. Rafiaee, M.R. Samani, D. Toghraie, Removal of hexavalent chromium from aqueous media using pomegranate peels modified by polymeric coatings: Effects of various composite synthesis parameters, Synthetic Metals. 265, 116416 (2020).
[56] X. Deng, Y. Chen, J. Wen, Y. Xu, J. Zhu, Z. Bian, Polyaniline-TiO2 composite photocatalysts for light-driven hexavalent chromium ions reduction, Science Bulletin. 65, 105-112 (2020).
[57] Z. Khodami, A. Nezamzadeh-Ejhieh, Investigation of photocatalytic effect of ZnO-SnO2/nano clinoptilolite system in the photodegradation of aqueous mixture of 4-methylbenzoic acid/2-chloro-5-nitrobenzoic acid, J. Mol. Catal. A: Chem. 409, 59-68 (2015).
[58] J. Lin, Z. Luo, J. Liu, P. Li, Photocatalytic degradation of methylene blue in aqueous solution by using ZnO-SnO2 nanocomposites, Materials Science in Semiconductor Processing, 87, 24-31 (2018).
[59] Z. Chen, H. Gong, Q. Liu, M. Song, C. Huang, NiSe2 nanoparticles grown in situ on CdS nanorods for enhanced photocatalytic hydrogen evolution., ACS Sustain. Chem. Eng. 7, 16720-16728 (2019).