Adhikari, D., Prasai, R., Lamichhane, S., Gautam, D., Sharma, S., & Acharya, S. (2021). Climate Change Impacts and Adaptation Strategies in Trans-Himalaya Region of Nepal. Journal of Forest and Livelihood, 20, 1.
Bai, Y., Yang, Y., & Jiang, H. (2019). Intercomparison of AVHRR GIMMS3g, terra MODIS, and SPOT-VGT NDVI products over the Mongolian Plateau. Remote Sensing, 11(17). https://doi.org/10.3390/rs11172030
Baniya, B., Tang, Q., Huang, Z., Sun, S., & Techato, K. anan. (2018). Spatial and temporal variation of NDVI in response to climate change and the implication for carbon dynamics in Nepal. Forests, 9(6). https://doi.org/10.3390/f9060329
Coleman, R. W., Stavros, N., Yadav, V., & Parazoo, N. (2020). A simplified framework for high-resolution urban vegetation classification with optical imagery in the Los Angeles Megacity. Remote Sensing, 12(15). https://doi.org/10.3390/RS12152399
Connell, J. H., & Orias, E. (1964). The Ecological Regulation of Species Diversity. The American Naturalist, 98(903), 399–414. https://doi.org/10.1086/282335
Dai, J., Roberts, D. A., Stow, D. A., An, L., & Zhao, Q. (2020). Green Vegetation Cover Has Steadily Increased since Establishment of Community Forests in Western Chitwan, Nepal. Remote Sensing, 12(24), 4071. doi:10.3390/rs12244071
Galvão, L. S., dos Santos, J. R., Roberts, D. A., Breunig, F. M., Toomey, M., & de Moura, Y. M. (2011). On intra-annual EVI variability in the dry season of tropical forest: A case study with MODIS and hyperspectral data. Remote Sensing of Environment, 115(9), 2350–2359. https://doi.org/10.1016/j.rse.2011.04.035
Gillespie, T. W., Ostermann-Kelm, S., Dong, C., Willis, K. S., Okin, G. S., & MacDonald, G. M. (2018). Monitoring changes of NDVI in protected areas of southern California. Ecological Indicators, 88, 485–494. https://doi.org/10.1016/j.ecolind.2018.01.031
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
Hamunyela, E., Rosca, S., Mirt, A., Engle, E., Herold, M., Gieseke, F., & Verbesselt, J. (2020). Implementation of BFASTmonitor Algorithm on Google Earth Engine to support large-area and sub-annual change monitoring using Earth Observation Data. Remote Sensing, 12(18), 2953. https://doi.org/10.3390/rs12182953
Inman, V. L., & Lyons, M. B. (2020). Automated inundation mapping over large areas using Landsat data and google earth engine. Remote Sensing, 12(8). https://doi.org/10.3390/RS12081348
Kafley, H., Lamichhane, B. R., Maharjan, R., Khadka, M., Bhattarai, N., & Gompper, M. E. (2019). Tiger and leopard co-occurrence: intraguild interactions in response to human and livestock disturbance. Basic and Applied Ecology, 40(November), 78–89. https://doi.org/10.1016/j.baae.2019.07.007
Kafley, H., Lamichhane, B. R., Maharjan, R., Thapaliya, B., Bhattarai, N., Khadka, M., & Gompper, M. E. (2019). Estimating prey abundance and distribution from camera trap data using binomial mixture models. European Journal of Wildlife Research, 65(5), 0–14. https://doi.org/10.1007/s10344-019-1308-0
Kim, Y., Park, N. W., & Lee, K. Do. (2017). Self-learning based land-cover classification using sequential class patterns from past land-cover maps. Remote Sensing, 9(9). https://doi.org/10.3390/rs9090921
Krakauer, N., Lakhankar, T., & Anadón, J. (2017). Mapping and Attributing Normalized Difference Vegetation Index Trends for Nepal. Remote Sensing, 9(10), 986. doi:10.3390/rs9100986
Liu, X., Zhu, X., Li, S., Liu, Y., & Pan, Y. (2015). Changes in growing season vegetation and their associated driving forces in China during 2001-2012. Remote Sensing, 7(11), 15517–15535. https://doi.org/10.3390/rs71115517
Liu, Y., Li, Y., Li, S., & Motesharrei, S. (2015). Spatial and temporal patterns of global NDVI trends: Correlations with climate and human factors. Remote Sensing, 7(10), 13233–13250. https://doi.org/10.3390/rs71013233
Luan, J., Liu, D., Zhang, L., Huang, Q., Feng, J., Lin, M., & Li, G. (2018). Analysis of the spatial-temporal change of the vegetation index in the upper reach of Han River Basin in 2000–2016. Proceedings of the International Association of Hydrological Sciences, 379, 287–292. https://doi.org/10.5194/piahs-379-287-2018
Marino, J. A., Peacor, S. D., Bunnell, D. B., Vanderploeg, H. A., Pothoven, S. A., Elgin, A. K., Bence, J. R., Jiao, J., & Ionides, E. L. (2019). Evaluating consumptive and nonconsumptive predator effects on prey density using field time-series data. Ecology, 100(3), 1–14. https://doi.org/10.1002/ecy.2583
Martin, E. H., Jensen, R. R., Hardin, P. J., Kisingo, A. W., Shoo, R. A., & Eustace, A. (2019). Assessing changes in Tanzania’s Kwakuchinja Wildlife Corridor using multitemporal satellite imagery and open source tools. Applied Geography, 110. https://doi.org/10.1016/j.apgeog.2019.102051
Midekisa, A., Holl, F., Savory, D. J., Andrade-Pacheco, R., Gething, P. W., Bennett, A., & Sturrock, H. J. W. (2017). Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing. PLoS ONE, 12(9). https://doi.org/10.1371/journal.pone.0184926
Mlenga, D. H., & Jordaan, A. J. (2020). Integrated drought monitoring framework for Eswatini applying standardised precipitation index and normalised difference vegetation index. Jàmbá Journal of Disaster Risk Studies, 12(1). https://doi.org/10.4102/jamba.v12i1.749
Moffiet, T., Mengersen, K., King, R., Witte, C., & Armston, J. (2006). Modelling of foliage projected cover using Landsat-7 spectral imagery: Spectral indices for greenness and brightness. Transmuted family of distributions-development of View project Socio-spatial statistics View project Modelling of foliage projected cover using Landsat-7 spectral imagery: Spectral indices for greenness and brightness. Conference Paper modelling of foliage projected cover using landsat-7 spectral imagery: spectral indices for greenness and brightness. 20–24. https://doi.org/10.13140/2.1.4855.0726
Moura, Y. M., Galvão, L. S., dos Santos, J. R., Roberts, D. A., & Breunig, F. M. (2012). Use of MISR/Terra data to study intra- and inter-annual EVI variations in the dry season of tropical forest. Remote Sensing of Environment, 127, 260–270. https://doi.org/10.1016/j.rse.2012.09.013
Mutanga, O., & Kumar, L. (2019). Google earth engine applications. In Remote Sensing (Vol. 11, Issue 5). MDPI AG. https://doi.org/10.3390/rs11050591
Novillo, C. J., Arrogante-Funes, P., & Romero-Calcerrada, R. (2019). Recent NDVI trends in mainland Spain: Land-cover and phytoclimatic-type implications. ISPRS International Journal of Geo-Information, 8(1). https://doi.org/10.3390/ijgi8010043
Plains, F., & Park, N. (2019). Comparative Study in Habitat Suitability Analysis of Wild Water buffalo (Bubalus arnee) in Two Flood Plains of Chitwan National Park (CNP), Nepal. International Journal of Research Studies in Zoology, 5(3). https://doi.org/10.20431/2454-941x.0503001
Prasai, R. (2021). Distribution of bengal tiger (0RW1S34RfeSDcfkexd09rT2panthera tigris1RW1S34RfeSDcfkexd09rT2) and their main prey species in chitwan national park, nepal (Order No. 28544104). Available from ProQuest Dissertations & Theses Global. (2555987929). Retrieved from https://zeus.tarleton.edu/login?url=https://www.proquest.com/dissertations-theses/distribution-bengal-tiger-em-panthera-tigris/docview/2555987929/se-2?accountid=7078
Prasai, R., Kafley, H., Upadhaya, S., Thapa, S., Shrestha, P., Dudley, A., & Timilsina, Y. P. (2021). Population status and distribution of the Critically Endangered Bengal Florican Houbaropsis bengalensis in the grassland of Koshi Tappu Wildlife Reserve, Nepal. Journal of Threatened Taxa, 13(9), 19293–19301. https://doi.org/10.11609/jott.6503.13.9.19293-19301
Prasai, R., Schwertner, T. W., Mainali, K., Mathewson, H., Kafley, H., Thapa, S., Adhikari, D., Medley, P., & Drake, J. (2021). Application of Google earth engine python API and NAIP imagery for land use and land cover classification: A case study in Florida, USA. Ecological Informatics, 66, 101474. https://doi.org/10.1016/j.ecoinf.2021.101474
Rouse, J. W., R. H. Haas, J. A. Schell, and D.W. Deering. (1973). Monitoring vegetation systems in the great plains with ERTS. Third NASA ERTS Symposium, NASA SP-351 I, Washington, D.C., USA, 1973, 309–317
Sarma, K., Kumar, A., Krishna, M., Medhi, M., & Tripathi, O. P. (2015). Predicting Suitable Habitats for the Vulnerable Eastern Hoolock Gibbon, Hoolock leuconedys, in India Using the MaxEnt Model. Folia Primatologica, 86(4), 387–397. https://doi.org/10.1159/000381952
Thapa, N., & Prasai, R. (2022). Impacts of Floods in Land Use Land Cover Change:- a Case Study of Indrawati and Melamchi River, Melamchi, and Indrawati Municipality, Nepal. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4104357
Thapa, S., Prasai, R., & Pahadi, R. (2020). Does gender-based leadership affect good governance in community forest management ? A case study from Bhaktapur district. Banko Janakari, 30(2), 59–70. https://doi.org/10.3126/banko.v30i2.33479