1. Pathogens Hijack Host Cell Metabolism: Intracellular Infection as a Driver of the Warburg Effect in Cancer and Other Chronic Inflammatory Conditions. Immunometabolism. 2021;
2. Gonzaga L, de Assis Barros D’ F, Zanella E. The COVID-19 “Bad Tryp” Syndrome: NAD/NADH+, Tryptophan Phenylalanine Metabolism and Thermogenesis like Hecatomb - The Hypothesis of Pathophysiology Based on a Compared COVID-19 and Yellow Fever Inflammatory Skeleton. Journal of Infectious Diseases and Epidemiology. 2022 Jan 13;8(1):243.
3. Bartrons R, Caro J. Hypoxia, glucose metabolism and the Warburg’s effect. J Bioenerg Biomembr [Internet]. 2007 Jun [cited 2022 Jan 20];39(3):223–9. Available from: https://pubmed.ncbi.nlm.nih.gov/17661163/
4. Venkatesh K v., Darunte L, Bhat PJ. Warburg Effect. Encyclopedia of Systems Biology [Internet]. 2013 [cited 2022 Jan 20];2349–50. Available from: https://link.springer.com/referenceworkentry/10.1007/978-1-4419-9863-7_703
5. Schwartz L, Supuran C, Alfarouk K. The Warburg Effect and the Hallmarks of Cancer. Anti-Cancer Agents in Medicinal Chemistry. 2017 Jan 24;17(2):164–70.
6. Vaupel P, Multhoff G, Bennet L, Chan J, Vaupel P, Multhoff G, et al. Revisiting the Warburg effect: historical dogma versus current understanding. The Journal of Physiology [Internet]. 2021 Mar 1 [cited 2022 Jan 20];599(6):1745–57. Available from: https://onlinelibrary.wiley.com/doi/full/10.1113/JP278810
7. Suistomaa M, Ruokonen E, Kari A, Takala J. Time-pattern of lactate and lactate to pyruvate ratio in the first 24 hours of intensive care emergency admissions. Shock [Internet]. 2000 [cited 2022 May 4];14(1):8–12. Available from: https://pubmed.ncbi.nlm.nih.gov/10909886/
8. Velavan TP, Linh LTK, Kreidenweiss A, Gabor J, Krishna S, Kremsner PG. Longitudinal Monitoring of Lactate in Hospitalized and Ambulatory COVID-19 Patients. The American Journal of Tropical Medicine and Hygiene [Internet]. 2021 Mar 3 [cited 2021 Dec 9];104(3):1041–4. Available from: https://www.ajtmh.org/view/journals/tpmd/104/3/article-p1041.xml
9. Icard P, Lincet H, Wu Z, Coquerel A, Forgez P, Alifano M, et al. The key role of Warburg effect in SARS-CoV-2 replication and associated inflammatory response. Biochimie. 2021 Jan 1;180:169–77.
10. Icard P, Simula L, Rei J, Fournel L, de Pauw V, Alifano M. On the footsteps of Hippocrates, Sanctorius and Harvey to better understand the influence of cold on the occurrence of COVID-19 in European countries in 2020. Biochimie [Internet]. 2021 Dec 1 [cited 2022 May 6];191:164–71. Available from: https://pubmed.ncbi.nlm.nih.gov/34555456/
11. Ferraro E, Germanò M, Mollace R, Mollace V, Malara N. HIF-1, the Warburg Effect, and Macrophage/Microglia Polarization Potential Role in COVID-19 Pathogenesis. Oxidative Medicine and Cellular Longevity. 2021;2021.
12. Yang HC, Ma TH, Tjong WY, Stern A, Chiu DTY. G6PD deficiency, redox homeostasis, and viral infections: implications for SARS-CoV-2 (COVID-19). https://doi.org/101080/1071576220201866757 [Internet]. 2021 [cited 2022 May 5];55(4):364–74. Available from: https://www.tandfonline.com/doi/abs/10.1080/10715762.2020.1866757
13. Ren Z, Yu Y, Chen C, Yang D, Ding T, Zhu L, et al. The Triangle Relationship Between Long Noncoding RNA, RIG-I-like Receptor Signaling Pathway, and Glycolysis. Frontiers in Microbiology. 2021 Nov 30;12:3693.
14. Barzegar M, Stokes KY, Chernyshev O, Kelley RE, Alexander JS. The Role of the ACE2/MasR Axis in Ischemic Stroke: New Insights for Therapy. Biomedicines 2021, Vol 9, Page 1667 [Internet]. 2021 Nov 11 [cited 2022 Feb 23];9(11):1667. Available from: https://www.mdpi.com/2227-9059/9/11/1667/htm
15. Medina-Enríquez MM, Lopez-León S, Carlos-Escalante JA, Aponte-Torres Z, Cuapio A, Wegman-Ostrosky T. ACE2: the molecular doorway to SARS-CoV-2 [Internet]. Vol. 10, Cell and Bioscience. BioMed Central Ltd; 2020 [cited 2021 May 30]. p. 1–17. Available from: https://doi.org/10.1186/s13578-020-00519-8
16. Dhaundiyal A, Kumari P, Jawalekar SS, Chauhan G, Kalra S, Navik U. Is highly expressed ACE 2 in pregnant women “a curse” in times of COVID-19 pandemic? Life Sciences [Internet]. 2021 Jan 1 [cited 2021 Sep 4];264:118676. Available from: /pmc/articles/PMC7598563/
17. Chaudhry F, Lavandero S, Xie X, Sabharwal B, Zheng YY, Correa A, et al. Manipulation of ACE2 expression in COVID-19. Open Heart [Internet]. 2020 Dec 1 [cited 2022 Feb 24];7(2):e001424. Available from: https://openheart.bmj.com/content/7/2/e001424
18. Gengler C, Dubruc E, Favre G, Greub G, Leval L de, Baud D. SARS-CoV-2 ACE-receptor detection in the placenta throughout pregnancy. Clinical Microbiology and Infection [Internet]. 2021 Mar 1 [cited 2021 Sep 4];27(3):489–90. Available from: http://www.clinicalmicrobiologyandinfection.com/article/S1198743X20306030/fulltext
19. Samavati L, Uhal BD. ACE2, Much More Than Just a Receptor for SARS-COV-2. Frontiers in Cellular and Infection Microbiology. 2020 Jun 5;10:317.
20. Chen F, Zhang Y, Li X, Li W, Liu X, Xue X. The Impact of ACE2 Polymorphisms on COVID-19 Disease: Susceptibility, Severity, and Therapy. Frontiers in Cellular and Infection Microbiology. 2021 Oct 22;11:1002.
21. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (1979) [Internet]. 2020 Mar 27 [cited 2021 May 30];367(6485):1444–8. Available from: http://science.sciencemag.org/
22. Zhang H, Li HB, Lyu JR, Lei XM, Li W, Wu G, et al. Specific ACE2 expression in small intestinal enterocytes may cause gastrointestinal symptoms and injury after 2019-nCoV infection. International Journal of Infectious Diseases [Internet]. 2020;96:19–24. Available from: https://doi.org/10.1016/j.ijid.2020.04.027
23. Shook LL, Bordt EA, Meinsohn MC, Pepin D, Guzman RM de, Brigida S, et al. Placental expression of ACE2 and TMPRSS2 in maternal SARS-CoV-2 infection: are placental defenses mediated by fetal sex? bioRxiv [Internet]. 2021 Apr 1 [cited 2021 Sep 1];2021.04.01.438089. Available from: https://www.biorxiv.org/content/10.1101/2021.04.01.438089v1
24. Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pohlmann S. TMPRSS2 and ADAM17 Cleave ACE2 Differentially and Only Proteolysis by TMPRSS2 Augments Entry Driven by the Severe Acute Respiratory Syndrome Coronavirus Spike Protein. Journal of Virology [Internet]. 2014 Jan 15 [cited 2022 Feb 23];88(2):1293–307. Available from: https://journals.asm.org/journal/jvi
25. Li M, Chen L, Zhang J, Xiong C, Li X. The SARS-CoV-2 receptor ACE2 expression of maternal-fetal interface and fetal organs by single-cell transcriptome study. PLOS ONE [Internet]. 2020 Apr 1 [cited 2021 Sep 1];15(4):e0230295. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230295
26. Camargo SMR, Vuille-Dit-Bille RN, Meier CF, Verrey F. ACE2 and gut amino acid transport [Internet]. Vol. 134, Clinical Science. Portland Press Ltd; 2020 [cited 2021 Feb 15]. p. 2823–33. Available from: https://pubmed.ncbi.nlm.nih.gov/33140827/
27. Gemmati D, Bramanti B, Serino ML, Secchiero P, Zauli G, Tisato V. COVID-19 and Individual Genetic Susceptibility/Receptivity: Role of ACE1/ACE2 Genes, Immunity, Inflammation and Coagulation. Might the Double X-Chromosome in Females Be Protective against SARS-CoV-2 Compared to the Single X-Chromosome in Males? International Journal of Molecular Sciences 2020, Vol 21, Page 3474 [Internet]. 2020 May 14 [cited 2022 Feb 23];21(10):3474. Available from: https://www.mdpi.com/1422-0067/21/10/3474/htm
28. Xiang Z, Liu J, Shi D, Chen W, Li J, Yan R, et al. Glucocorticoids improve severe or critical COVID-19 by activating ACE2 and reducing IL-6 levels. International Journal of Biological Sciences [Internet]. 2020 [cited 2022 Feb 24];16(13):2382. Available from: /pmc/articles/PMC7378642/
29. Ouyang Y, Bagalkot T, Fitzgerald W, Sadovsky E, Chu T, Martínez-Marchal A, et al. Term Human Placental Trophoblasts Express SARS-CoV-2 Entry Factors ACE2, TMPRSS2, and Furin. mSphere. 2021 Apr 28;6(2).
30. Merlo LMF, DuHadaway JB, Montgomery JD, Peng WD, Murray PJ, Prendergast GC, et al. Differential Roles of IDO1 and IDO2 in T and B Cell Inflammatory Immune Responses. Frontiers in Immunology [Internet]. 2020 Aug 18 [cited 2021 Feb 10];11:1861. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2020.01861/full
31. de Araújo EF, Feriotti C, de Lima Galdino NA, Preite NW, Calich VLG, Loures FV. The IDO-AhR axis controls Th17/Treg immunity in a pulmonary model of fungal infection. Frontiers in Immunology [Internet]. 2017 Jul;8(JUL):880. Available from: www.frontiersin.org
32. Torosyan R, Huang S, Bommi P v., Tiwari R, An SY, Schonfeld M, et al. Hypoxic preconditioning protects against ischemic kidney injury through the IDO1/kynurenine pathway. Cell Reports [Internet]. 2021 Aug 17 [cited 2021 Oct 9];36(7). Available from: http://www.cell.com/article/S2211124721009815/fulltext
33. Wyler SC, Lord CC, Lee S, Elmquist JK, Liu C. Serotonergic Control of Metabolic Homeostasis. Frontiers in Cellular Neuroscience. 2017 Sep 20;0:277.
34. O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Vol. 277, Behavioural Brain Research. Elsevier; 2015. p. 32–48.
35. Shong KE, Oh CM, Namkung J, Park S, Kim H. Serotonin regulates de novo lipogenesis in adipose tissues through serotonin receptor 2a. Endocrinology and Metabolism. 2020;35(2):470–9.
36. Oxenkrug G. Insulin resistance and dysregulation of tryptophan-kynurenine and kynurenine-nicotinamide adenine dinucleotide metabolic pathways. In: Molecular Neurobiology [Internet]. Humana Press Inc.; 2013. p. 294–301. Available from: /pmc/articles/PMC3779535/?report=abstract
37. Geisler S, Mayersbach P, Becker K, Schennach H, Fuchs D, Gostner JM. Serum tryptophan, kynurenine, phenylalanine, tyrosine and neopterin concentrations in 100 healthy blood donors. Pteridines [Internet]. 2015 Mar 1 [cited 2022 Feb 28];26(1):31–6. Available from: https://www.degruyter.com/document/doi/10.1515/pterid-2014-0015/html
38. Nguyen NT, Nakahama T, Le DH, Son L van, Chu HH, Kishimoto T. Aryl Hydrocarbon Receptor and Kynurenine: Recent Advances in Autoimmune Disease Research. Frontiers in Immunology [Internet]. 2014 [cited 2021 Aug 26];5(OCT). Available from: /pmc/articles/PMC4212680/
39. Du L, Xing Z, Tao B, Li T, Yang D, Li W, et al. Both IDO1 and TDO contribute to the malignancy of gliomas via the Kyn–AhR–AQP4 signaling pathway. Signal Transduction and Targeted Therapy [Internet]. 2020 Dec 1 [cited 2021 Feb 22];5(1):1–13. Available from: https://doi.org/10.1038/s41392-019-0103-4
40. Gürcü S, Girgin G, Yorulmaz G, Kılıçarslan B, Efe B, Baydar T. Neopterin and biopterin levels and tryptophan degradation in patients with diabetes. Scientific Reports 2020 10:1 [Internet]. 2020 Oct 12 [cited 2021 Nov 4];10(1):1–8. Available from: https://www.nature.com/articles/s41598-020-74183-w
41. How Do Patients With Myeloproliferative Neoplasms Fare After COVID-19 Infection? - ASH Clinical News [Internet]. [cited 2021 Sep 8]. Available from: https://www.ashclinicalnews.org/news/literature-scan/patients-myeloproliferative-neoplasms-fare-covid-19-infection/
42. Deac OM, Mills JL, Gardiner CM, Shane B, Quinn L, Midttun Ø, et al. Serum Immune System Biomarkers Neopterin and Interleukin-10 Are Strongly Related to Tryptophan Metabolism in Healthy Young Adults. The Journal of Nutrition [Internet]. 2016 Sep 1 [cited 2021 Nov 4];146(9):1801–6. Available from: https://academic.oup.com/jn/article/146/9/1801/4584888
43. Mohapatra SR, Sadik A, Tykocinski LO, Dietze J, Poschet G, Heiland I, et al. Hypoxia Inducible Factor 1α Inhibits the Expression of Immunosuppressive Tryptophan-2,3-Dioxygenase in Glioblastoma. Frontiers in Immunology. 2019 Dec 4;0:2762.
44. Broekhuizen M, Klein T, Hitzerd E, Rijke YB de, Schoenmakers S, Sedlmayr P, et al. l-Tryptophan–Induced Vasodilation Is Enhanced in Preeclampsia. Hypertension [Internet]. 2020 Jul 1 [cited 2021 Aug 20];76(1):184–94. Available from: https://www.ahajournals.org/doi/abs/10.1161/HYPERTENSIONAHA.120.14970
45. Oxenkrug GF, Turski WA, Zgrajka W, Weinstock J v, Summergrad P. Tryptophan-Kynurenine Metabolism and Insulin Resistance in Hepatitis C Patients. Hepatitis Research and Treatment [Internet]. 2013;2013:1–4. Available from: /pmc/articles/PMC3777117/?report=abstract
46. Vyavahare S, Kumar S, Cantu N, Kolhe R, Bollag WB, McGee-Lawrence ME, et al. Tryptophan-Kynurenine Pathway in COVID-19-Dependent Musculoskeletal Pathology: A Minireview. deng zhenhan, editor. Mediators of Inflammation [Internet]. 2021 Oct 5 [cited 2021 Oct 10];2021:1–6. Available from: https://www.hindawi.com/journals/mi/2021/2911578/
47. Boutin JA, Audinot V, Ferry G, Delagrange P. Molecular tools to study melatonin pathways and actions. Trends in Pharmacological Sciences. 2005 Aug;26(8):412–9.
48. Reiter RJ, Ma Q, Sharma R. Melatonin in Mitochondria: Mitigating Clear and Present Dangers. 2020 [cited 2022 Feb 18]; Available from: www.physiologyonline.org
49. Sanchez-Sanchez AM, Antolin I, Puente-Moncada N, Suarez S, Gomez-Lobo M, Rodriguez C, et al. Melatonin Cytotoxicity Is Associated to Warburg Effect Inhibition in Ewing Sarcoma Cells. PLOS ONE [Internet]. 2015 Aug 7 [cited 2022 Feb 18];10(8):e0135420. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0135420
50. Paulmann N, Grohmann M, Voigt JP, Bert B, Vowinckel J, Bader M, et al. Intracellular serotonin modulates insulin secretion from pancreatic β-cells by protein serotonylation. PLoS Biology. 2009 Oct;7(10).
51. Serotonylation: A novel histone H3 marker | Signal Transduction and Targeted Therapy [Internet]. [cited 2021 Feb 15]. Available from: https://www.nature.com/articles/s41392-019-0048-7
52. Kim M, Lee SM, Jung J, Kim YJ, Moon KC, Seo1 JH, et al. Pinealectomy increases thermogenesis and decreases lipogenesis. Molecular Medicine Reports [Internet]. 2020 Nov 1 [cited 2021 May 22];22(5):4289–97. Available from: https://pubmed.ncbi.nlm.nih.gov/33000192/
53. Lettieri-Barbato D, Aquilano K. Aging and Immunometabolic Adaptations to Thermogenesis [Internet]. Vol. 63, Ageing Research Reviews. Elsevier Ireland Ltd; 2020 [cited 2021 May 22]. Available from: https://pubmed.ncbi.nlm.nih.gov/32810648/
54. Townsend KL, Tseng YH. Brown fat fuel utilization and thermogenesis [Internet]. Vol. 25, Trends in Endocrinology and Metabolism. Elsevier Inc.; 2014 [cited 2021 May 22]. p. 168–77. Available from: https://pubmed.ncbi.nlm.nih.gov/24389130/
55. Müller MJ, Bosy-Westphal A. Adaptive thermogenesis with weight loss in humans [Internet]. Vol. 21, Obesity. Obesity (Silver Spring); 2013 [cited 2021 May 22]. p. 218–28. Available from: https://pubmed.ncbi.nlm.nih.gov/23404923/
56. Periasamy M, Herrera JL, Reis FCG. Skeletal Muscle Thermogenesis and Its Role in Whole Body Energy Metabolism. Diabetes & Metabolism Journal [Internet]. 2017 Oct 24 [cited 2021 Oct 29];41(5):327–36. Available from: http://www.e-dmj.org/journal/view.php?number=494
57. Crane JD, Palanivel R, Mottillo EP, Bujak AL, Wang H, Ford RJ, et al. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nature Medicine 2014 21:2 [Internet]. 2014 Dec 8 [cited 2021 Oct 21];21(2):166–72. Available from: https://www.nature.com/articles/nm.3766
58. Mauler M, Bode C, Duerschmied D. Platelet serotonin modulates immune functions [Internet]. Vol. 36, Hamostaseologie. Schattauer GmbH; 2016 [cited 2021 May 22]. p. 11–6. Available from: https://pubmed.ncbi.nlm.nih.gov/25693763/
59. Attademo L, Bernardini F. Are dopamine and serotonin involved in COVID-19 pathophysiology? Vol. 35, European Journal of Psychiatry. Elsevier Espana S.L.U; 2021. p. 62–3.
60. Scotton WJ, Hill LJ, Williams AC, Barnes NM. Serotonin Syndrome: Pathophysiology, Clinical Features, Management, and Potential Future Directions. Int J Tryptophan Res [Internet]. 2019 Jan;12:1178646919873925. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31523132
61. Amireault P, Bayard E, Launay JM, Sibon D, Kim CL van, Colin Y, et al. Serotonin Is a Key Factor for Mouse Red Blood Cell Survival. PLoS ONE [Internet]. 2013 Dec 17 [cited 2021 Oct 9];8(12):83010. Available from: /pmc/articles/PMC3866204/
62. Navin K, Kuppili PP, Menon V. Repurposing Selective Serotonin Reuptake Inhibitors for COVID-19: Rationale and Concerns. Indian Journal of Psychological Medicine [Internet]. 2020 Nov 2 [cited 2021 May 30];42(6):578–80. Available from: https://www.mha.gov.in/sites/default/
63. Kaur H, Bose C, Mande SS. Tryptophan Metabolism by Gut Microbiome and Gut-Brain-Axis: An in silico Analysis. Frontiers in Neuroscience [Internet]. 2019 Jul;13:1365. Available from: www.frontiersin.org
64. Demiselle J, Fage N, Radermacher P, Asfar P. Vasopressin and its analogues in shock states: a review. Annals of Intensive Care [Internet]. 2020 Dec 1 [cited 2021 Aug 31];10(1). Available from: /pmc/articles/PMC6975768/
65. Erickson EN, Carter CS, Emeis CL. Oxytocin, Vasopressin and Prolactin in New Breastfeeding Mothers: Relationship to Clinical Characteristics and Infant Weight Loss: https://doi.org/101177/0890334419838225 [Internet]. 2019 Apr 29 [cited 2021 Aug 31];36(1):136–45. Available from: https://journals.sagepub.com/doi/full/10.1177/0890334419838225
66. Akie TE, Liu L, Nam M, Lei S, Cooper MP. OXPHOS-mediated induction of NAD+ promotes complete oxidation of fatty acids and interdicts non-alcoholic fatty liver disease. PLoS ONE. 2015 May 1;10(5).
67. Liu Y. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer [Internet]. Vol. 9, Prostate Cancer and Prostatic Diseases. Nature Publishing Group; 2006 [cited 2021 Feb 21]. p. 230–4. Available from: www.nature.com/pcan
68. Sena CM, Leandro A, Azul L, Seiça R, Perry G. Vascular oxidative stress: Impact and therapeutic approaches [Internet]. Vol. 9, Frontiers in Physiology. Frontiers Media S.A.; 2018 [cited 2021 Feb 15]. p. 1668. Available from: www.frontiersin.org
69. Mor A, Tankiewicz-Kwedlo A, Krupa A, Pawlak D. Role of Kynurenine Pathway in Oxidative Stress during Neurodegenerative Disorders. Cells 2021, Vol 10, Page 1603 [Internet]. 2021 Jun 26 [cited 2021 Oct 9];10(7):1603. Available from: https://www.mdpi.com/2073-4409/10/7/1603/htm
70. Chou JY, Mansfield BC, Weinstein DA. Renal Disease in Type I Glycogen Storage Disease. Genetic Diseases of the Kidney. 2009;693–708.
71. Redant S, Hussein H, Mugisha A, Attou R, Bels D de, Honore PM, et al. Differentiating Hyperlactatemia Type A From Type B: How Does the Lactate/pyruvate Ratio Help? J Transl Int Med [Internet]. 2019 Jul 11 [cited 2022 May 4];7(2):43–5. Available from: https://pubmed.ncbi.nlm.nih.gov/31380235/
72. Kim SH, Baek KH. Regulation of Cancer Metabolism by Deubiquitinating Enzymes: The Warburg Effect. International Journal of Molecular Sciences 2021, Vol 22, Page 6173 [Internet]. 2021 Jun 8 [cited 2022 May 2];22(12):6173. Available from: https://www.mdpi.com/1422-0067/22/12/6173/htm
73. Zanella LGF de ABD. NEUROCOV/PSYCCOV: Neuropsychiatric Phenomena in COVID-19 - Exposing Their Hidden Essence and Warning against Iatrogenesis. Journal of Infectious Diseases and Epidemiology [Internet]. 2021 Aug 6 [cited 2021 Aug 27];7(8):222. Available from: https://www.clinmedjournals.org/articles/jide/journal-of-infectious-diseases-and-epidemiology-jide-7-222.php?jid=jide
74. Wu LE, Sinclair DA. SIRT2 controls the pentose phosphate switch. The EMBO Journal [Internet]. 2014 Jun 17 [cited 2022 Feb 25];33(12):1287–8. Available from: https://onlinelibrary.wiley.com/doi/full/10.15252/embj.201488713
75. Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends in Biochemical Sciences [Internet]. 2014 Aug 1 [cited 2022 Feb 25];39(8):347–54. Available from: http://www.cell.com/article/S0968000414001066/fulltext
76. Wu LE, Sinclair DA. SIRT2 controls the pentose phosphate switch. The EMBO Journal [Internet]. 2014 Jun 17 [cited 2022 Feb 24];33(12):1287–8. Available from: https://onlinelibrary.wiley.com/doi/full/10.15252/embj.201488713
77. Jiang P, Du W, Wu M. Regulation of the pentose phosphate pathway in cancer. Protein & Cell [Internet]. 2014 [cited 2022 Jan 7];5(8):592. Available from: /pmc/articles/PMC4112277/
78. Ge T, Yang J, Zhou S, Wang Y, Li Y, Tong X. The Role of the Pentose Phosphate Pathway in Diabetes and Cancer. Frontiers in Endocrinology. 2020 Jun 9;11:365.
79. XiaoWusheng, WangRui-Sheng, E. H, LoscalzoJoseph. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism. https://home.liebertpub.com/ars [Internet]. 2018 Jan 20 [cited 2021 Aug 16];28(3):251–72. Available from: https://www.liebertpub.com/doi/abs/10.1089/ars.2017.7216
80. Ying W. NAD+/NADH and NADP+/NADPH in Cellular Functions and Cell Death: Regulation and Biological Consequences. https://home.liebertpub.com/ars [Internet]. 2007 Dec 25 [cited 2021 Sep 4];10(2):179–206. Available from: https://www.liebertpub.com/doi/abs/10.1089/ars.2007.1672
81. Nguyen HP, Yi D, Lin F, Viscarra JA, Tabuchi C, Ngo K, et al. Aifm2, a NADH Oxidase, Supports Robust Glycolysis and Is Required for Cold- and Diet-Induced Thermogenesis. Molecular Cell [Internet]. 2020 Feb 6 [cited 2021 May 22];77(3):600-617.e4. Available from: https://pubmed.ncbi.nlm.nih.gov/31952989/
82. Kim J, Shao Y, Sang YK, Kim S, Hyun KS, Jun HJ, et al. Hypoxia-induced IL-18 Increases Hypoxia-inducible Factor-1α Expression through a Rac1-dependent NF-κB Pathway. Molecular Biology of the Cell [Internet]. 2008 Feb [cited 2022 Mar 5];19(2):433. Available from: /pmc/articles/PMC2230593/
83. Colgan SP, Eltzschig HK. Adenosine and Hypoxia-Inducible Factor Signaling in Intestinal Injury and Recovery. Annu Rev Physiol [Internet]. 2012 [cited 2021 Aug 16];74:153–75. Available from: /pmc/articles/PMC3882030/
84. Xu C, Li X, Guo P, Wang J. Hypoxia-Induced Activation of JAK/STAT3 Signaling Pathway Promotes Trophoblast Cell Viability and Angiogenesis in Preeclampsia. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research [Internet]. 2017 Oct 14 [cited 2021 Aug 16];23:4909. Available from: /pmc/articles/PMC5652249/
85. Kierans SJ, Taylor CT. Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology. The Journal of Physiology [Internet]. 2021 Jan 1 [cited 2022 Jan 20];599(1):23–37. Available from: https://onlinelibrary.wiley.com/doi/full/10.1113/JP280572
86. Wise LM, Xi Y, Purdy JG. Hypoxia-inducible factor 1α (Hif1α) suppresses virus replication in human cytomegalovirus infection by limiting kynurenine synthesis. mBio [Internet]. 2021 Apr 27 [cited 2021 May 25];12(2). Available from: https://doi.org/10.1128/mBio.02956-20.
87. Zhang Z, Li P, Wang Y, Yan H. Hypoxia‑induced expression of CXCR4 favors trophoblast cell migration and invasion via the activation of HIF‑1α. International Journal of Molecular Medicine [Internet]. 2018 Sep 1 [cited 2021 Aug 15];42(3):1508–16. Available from: http://www.spandidos-publications.com/10.3892/ijmm.2018.3701/abstract
88. Lu J, Tan M, Cai Q. The Warburg effect in tumor progression: Mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Letters. 2015 Jan 28;356(2):156–64.
89. Niemann B, Rohrbach S, Miller MR, Newby DE, Fuster V, Kovacic JC. Oxidative Stress and Cardiovascular Risk: Obesity, Diabetes, Smoking, and Pollution: Part 3 of a 3-Part Series. Vol. 70, Journal of the American College of Cardiology. Elsevier USA; 2017. p. 230–51.
90. Doroftei B, Ilie OD, Cojocariu RO, Ciobica A, Maftei R, Grab D, et al. Minireview exploring the biological cycle of Vitamin B3 and its influence on oxidative stress: Further molecular and clinical aspects. Molecules [Internet]. 2020;25(15):3323. Available from: www.mdpi.com/journal/molecules
91. Abboud-Jarrous G, Atzmon R, Peretz T, Palermo C, Gadea BB, Joyce JA, et al. Cathepsin L Is Responsible for Processing and Activation of Proheparanase through Multiple Cleavages of a Linker Segment *. Journal of Biological Chemistry. 2008;283:18167–76.
92. Kitamura H, Kamon H, Sawa SI, Park SJ, Katunuma N, Ishihara K, et al. IL-6-STAT3 Controls Intracellular MHC Class II ab Dimer Level through Cathepsin S Activity in Dendritic Cells. Immunity. 2005;23:491–502.
93. Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science (1979) [Internet]. 2020 Aug 7 [cited 2021 Feb 21];369(6504):718–24. Available from: http://science.sciencemag.org/
94. Patel S, Homaei A, El-Seedi HR, Akhtar N. Cathepsins: Proteases that are vital for survival but can also be fatal. Biomedicine & Pharmacotherapy [Internet]. 2018 Sep 1 [cited 2021 Sep 3];105:526. Available from: /pmc/articles/PMC7172164/
95. Schurink B, Roos E, Vos W, Breur M, van der Valk P, Bugiani M. ACE2 Protein Expression During Childhood, Adolescence, and Early Adulthood: https://doi.org/101177/10935266221075312 [Internet]. 2022 Feb 28 [cited 2022 Apr 15];2022(0):1–5. Available from: https://journals.sagepub.com/doi/full/10.1177/10935266221075312
96. Feldstein LR, Rose EB, Horwitz SM, Collins JP, Newhams MM, Son MBF, et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. New England Journal of Medicine [Internet]. 2020 Jul 23 [cited 2022 Apr 15];383(4):334–46. Available from: https://www.nejm.org/doi/full/10.1056/NEJMoa2021680
97. AA D, P P, JS B. Presumptive Neonatal Multisystem Inflammatory Syndrome in Children Associated with Coronavirus Disease 2019. Am J Perinatol [Internet]. 2021 May 1 [cited 2021 Aug 19];38(6):632–6. Available from: https://pubmed.ncbi.nlm.nih.gov/33757142/
98. Dioguardi M, Cazzolla AP, Arena C, Sovereto D, Caloro GA, Dioguardi A, et al. Innate Immunity in Children and the Role of ACE2 Expression in SARS-CoV-2 Infection. Pediatric Reports [Internet]. 2021 [cited 2022 Apr 15];13(3):363. Available from: /pmc/articles/PMC8293341/
99. Pousa PA, Mendonça TSC, Oliveira EA, Simões-e-Silva AC, Pousa PA, Mendonça TSC, et al. Extrapulmonary manifestations of COVID-19 in children: a comprehensive review and pathophysiological considerations. Jornal de Pediatria [Internet]. 2021 Mar 1 [cited 2022 Apr 15];97(2):116–39. Available from: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0021-75572021000200116&lng=en&nrm=iso&tlng=en
100. Massalska MA, Gober HJ. How Children Are Protected From COVID-19? A Historical, Clinical, and Pathophysiological Approach to Address COVID-19 Susceptibility. Frontiers in Immunology. 2021 Jun 11;12:2191.
101. R KB, P BB, SP P, PA H. COVID-19-Related Potential Multisystem Inflammatory Syndrome in Childhood in a Neonate Presenting as Persistent Pulmonary Hypertension of the Newborn. Pediatr Infect Dis J [Internet]. 2021 [cited 2021 Aug 19];40(4):E162–4. Available from: https://pubmed.ncbi.nlm.nih.gov/33464010/
102. Chow EJ. The Multisystem Inflammatory Syndrome in Adults With SARS-CoV-2 Infection-Another Piece of an Expanding Puzzle. 2021; Available from: https://jamanetwork.com/
103. Chow EJ. The Multisystem Inflammatory Syndrome in Adults With SARS-CoV-2 Infection-Another Piece of an Expanding Puzzle. 2021; Available from: https://jamanetwork.com/
104. Guidance: Paediatric multisystem inflammatory syndrome temporally associated with COVID-19.
105. Multisystem Inflammatory Syndrome in Adults (MIS-A) Case Definition Information for Healthcare Providers [Internet]. [cited 2022 Jan 7]. Available from: https://www.cdc.gov/mis/mis-a/hcp.html
106. Roger C. COVID-19: should we consider it as a septic shock? (The treatment of COVID-19 patients in the ICU). Curr Opin Anaesthesiol [Internet]. 2021 Apr 1 [cited 2021 Dec 4];34(2):119–24. Available from: https://pubmed.ncbi.nlm.nih.gov/33470663/
107. Page-Wilson G, Arakawa R, Nemeth S, Bell F, Girvin Z, Tuohy MC, et al. Obesity is independently associated with septic shock, renal complications, and mortality in a multiracial patient cohort hospitalized with COVID-19. PLOS ONE [Internet]. 2021 Aug 1 [cited 2021 Dec 5];16(8):e0255811. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0255811
108. Hollenberg SM, Safi L, Parrillo JE, Fata M, Klinkhammer B, Gayed N, et al. Hemodynamic Profiles of Shock in Patients With COVID-19. The American Journal of Cardiology. 2021 Aug 15;153:135–9.
109. Poston JT, Patel BK, Davis AM. Management of Critically Ill Adults With COVID-19. JAMA [Internet]. 2020 May 12 [cited 2021 Dec 5];323(18):1839–41. Available from: https://jamanetwork.com/journals/jama/fullarticle/2763879
110. Arina P, Moro V, Baso B, Baxter-Derrington C, Singer M. Sepsis in severe COVID-19 is rarely septic shock: a retrospective single-centre cohort study. British Journal of Anaesthesia [Internet]. 2021 Nov 1 [cited 2021 Dec 5];127(5):e182–5. Available from: http://www.bjanaesthesia.org.uk/article/S0007091221005146/fulltext
111. Ibrahim ME, AL-Aklobi OS, Abomughaid MM, Al-Ghamdi MA. Epidemiological, clinical, and laboratory findings for patients of different age groups with confirmed coronavirus disease 2019 (COVID-19) in a hospital in Saudi Arabia. PLOS ONE [Internet]. 2021 Apr 1 [cited 2021 Dec 5];16(4):e0250955. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250955
112. Barbui T, Iurlo A, Masciulli A, Carobbio A, Ghirardi A, Rossi G, et al. Long-term follow-up of recovered MPN patients with COVID-19. Blood Cancer Journal 2021 11:6 [Internet]. 2021 Jun 16 [cited 2021 Sep 8];11(6):1–4. Available from: https://www.nature.com/articles/s41408-021-00509-0
113. Yan R, Zhang Y, Li Y, Xia L, Zhou Q. Structure of dimeric full-length human ACE2 in complex with B0AT1. bioRxiv [Internet]. 2020 Feb 18 [cited 2022 May 6];2020.02.17.951848. Available from: https://www.biorxiv.org/content/10.1101/2020.02.17.951848v1
114. Nisoli E, Cinti S, Valerio A. COVID-19 and Hartnup disease: an affair of intestinal amino acid malabsorption. Eating and Weight Disorders [Internet]. 2021 Jun 1 [cited 2022 May 6];26(5):1647–51. Available from: https://link.springer.com/article/10.1007/s40519-020-00963-y
115. Bates CJ. Niacin. Encyclopedia of Human Nutrition. 1998;253–9.
116. Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, et al. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 2012 Jan 1;1824(1):68–88.
117. Pinto-Lopes P, Silva AS, Pimenta J. “Non-resolving pneumonia”: A case of cryptogenic organizing pneumonia. Porto Biomedical Journal [Internet]. 2016 Nov 1 [cited 2021 Dec 5];1(5):191–2. Available from: https://www.elsevier.es/en-revista-porto-biomedical-journal-445-articulo-non-resolving-pneumonia-a-case-cryptogenic-S2444866416301027
118. Saxena P, Kumar K, Mittal S, Goyal N, Trikha S, Vashisth A. Acute fibrinous and organizing pneumonia: A rare form of nonbacterial pneumonia. Indian Journal of Critical Care Medicine [Internet]. 2016;20(4):245–7. Available from: /pmc/articles/PMC4906338/?report=abstract
119. Saxena P, Kumar K, Mittal S, Goyal N, Trikha S, Vashisth A. Acute fibrinous and organizing pneumonia: A rare form of nonbacterial pneumonia. Indian Journal of Critical Care Medicine [Internet]. 2016;20(4):245–7. Available from: /pmc/articles/PMC4906338/?report=abstract
120. de Oliveira Filho CM, Vieceli T, de Fraga Bassotto C, da Rosa Barbato JP, Garcia TS, Scheffel RS. Organizing pneumonia: A late phase complication of COVID-19 responding dramatically to corticosteroids. The Brazilian Journal of Infectious Diseases [Internet]. 2021 Jan 1 [cited 2021 Dec 5];25(1). Available from: http://bjid.elsevier.es/en-organizing-pneumonia-a-late-phase-articulo-S1413867021000040
121. Beasley MB, Franks TJ, Galvin JR, Gochuico B, Travis WD. Acute fibrinous and organizing pneumonia: A histologic pattern of lung injury and possible variant of diffuse alveolar damage. Archives of Pathology and Laboratory Medicine. 2002;126(9):1064–70.
122. Penha D, Pinto EG, Matos F, Hochhegger B, Monaghan C, Taborda-Barata L, et al. CO-RADS: Coronavirus Classification Review. Journal of Clinical Imaging Science [Internet]. 2021 [cited 2022 Apr 14];11(1). Available from: /pmc/articles/PMC7981938/
123. The Radiology Assistant : COVID-19 CO-RADS classification [Internet]. [cited 2022 Apr 11]. Available from: https://radiologyassistant.nl/chest/covid-19/corads-classification
124. Prokop M, van Everdingen W, van Rees Vellinga T, van Ufford HQ, Stöger L, Beenen L, et al. CO-RADS: A Categorical CT Assessment Scheme for Patients Suspected of Having COVID-19-Definition and Evaluation. Radiology [Internet]. 2020 Aug 1 [cited 2022 Apr 11];296(2):E97–104. Available from: https://pubs.rsna.org/doi/full/10.1148/radiol.2020201473
125. Aljondi R, Alghamdi S. Diagnostic Value of Imaging Modalities for COVID-19: Scoping Review. J Med Internet Res [Internet]. 2020 Aug 1 [cited 2021 Dec 1];22(8). Available from: https://pubmed.ncbi.nlm.nih.gov/32716893/
126. de Oliveira Filho CM, Vieceli T, de Fraga Bassotto C, da Rosa Barbato JP, Garcia TS, Scheffel RS. Organizing pneumonia: A late phase complication of COVID-19 responding dramatically to corticosteroids. The Brazilian Journal of Infectious Diseases. 2021 Jan 1;25(1):101541.
127. George PM, Barratt SL, Condliffe R, Desai SR, Devaraj A, Forrest I, et al. Respiratory follow-up of patients with COVID-19 pneumonia. Thorax [Internet]. 2020 Nov 1 [cited 2022 May 6];75(11):1009–16. Available from: https://thorax.bmj.com/content/75/11/1009
128. Duzgun SA, Durhan G, Demirkazik FB, Akpinar MG, Ariyurek OM. COVID-19 pneumonia: the great radiological mimicker. Insights into Imaging [Internet]. 2020 Dec 1 [cited 2022 May 6];11(1):1–15. Available from: https://insightsimaging.springeropen.com/articles/10.1186/s13244-020-00933-z
129. Bowser JL, Lee JW, Yuan X, Eltzschig HK. The hypoxia-adenosine link during inflammation. https://doi.org/101152/japplphysiol001012017 [Internet]. 2017 Nov 1 [cited 2021 Aug 16];123(5):1303–20. Available from: https://journals.physiology.org/doi/abs/10.1152/japplphysiol.00101.2017
130. Meng F, Guo Z, Hu Y, Mai W, Zhang Z, Zhang B, et al. CD73-derived adenosine controls inflammation and neurodegeneration by modulating dopamine signalling. Brain [Internet]. 2019 Mar 1 [cited 2021 Feb 10];142(3):700–18. Available from: https://pubmed.ncbi.nlm.nih.gov/30689733/
131. Lennon PF, Taylor CT, Stahl GL, Colgan SP. Neutrophil-derived 5’-adenosine monophosphate promotes endothelial barrier function via CD73-mediated conversion to adenosine and endothelial A(2B) receptor activation. Journal of Experimental Medicine [Internet]. 1998 Oct 19 [cited 2021 Feb 10];188(8):1433–43. Available from: http://www.jem.org
132. Bin A, Caputi V, Bistoletti M, Montopoli M, Colucci R, Antonioli L, et al. The ecto-enzymes CD73 and adenosine deaminase modulate 5′-AMP-derived adenosine in myofibroblasts of the rat small intestine. Purinergic Signalling [Internet]. 2018 Dec 1 [cited 2021 Feb 10];14(4):409–21. Available from: https://doi.org/10.1007/s11302-018-9623-6
133. Adenosine Receptors - an overview | ScienceDirect Topics [Internet]. [cited 2021 Aug 15]. Available from: https://www.sciencedirect.com/topics/neuroscience/adenosine-receptors
134. Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of Adenosine Receptors: The State of the Art. https://doi.org/101152/physrev000492017 [Internet]. 2018 May 31 [cited 2021 Aug 25];98(3):1591–625. Available from: https://journals.physiology.org/doi/abs/10.1152/physrev.00049.2017
135. Dézsi L, Tuka B, Martos D, Vécsei L. Alzheimer’s disease, astrocytes and kynurenines. Vol. 12, CURRENT ALZHEIMER RESEARCH. 2015.
136. Guillemin GJ, Williams KR, Smith DG, Smythe GA, Croitoru-Lamoury J, Brew BJ. Quinolinic acid in the pathogenesis of alzheimer’s disease. In: Advances in Experimental Medicine and Biology. Kluwer Academic/Plenum Publishers; 2003. p. 167–76.
137. Gonçalves FQ, Lopes JP, Silva HB, Lemos C, Silva AC, Gonçalves N, et al. Synaptic and memory dysfunction in a β-amyloid model of early Alzheimer’s disease depends on increased formation of ATP-derived extracellular adenosine. Neurobiology of Disease. 2019 Dec 1;132.
138. Vécsei L, Szalárdy L, Fülöp F, Toldi J. Kynurenines in the CNS: Recent advances and new questions [Internet]. Vol. 12, Nature Reviews Drug Discovery. Nature Publishing Group; 2013. p. 64–82. Available from: www.nature.com/reviews/drugdisc
139. Lawler NG, Gray N, Kimhofer T, Boughton B, Gay M, Yang R, et al. Systemic Perturbations in Amine and Kynurenine Metabolism Associated with Acute SARS-CoV-2 Infection and Inflammatory Cytokine Responses. Journal of Proteome Research [Internet]. 2021 May 7 [cited 2021 Oct 10];20(5):2796–811. Available from: https://pubs.acs.org/doi/full/10.1021/acs.jproteome.1c00052
140. Pelletier AN, Tomazella M, Carvalho K de, Nicolau A, Marmoratto M, Silveira C, et al. Yellow fever disease severity is driven by an acute cytokine storm modulated by an interplay between the human gut microbiome and the metabolome. medRxiv [Internet]. 2021 Sep 27 [cited 2021 Oct 3];2021.09.25.21264125. Available from: https://www.medrxiv.org/content/10.1101/2021.09.25.21264125v1
141. Páez-Franco JC, Torres-Ruiz J, Sosa-Hernández VA, Cervantes-Díaz R, Romero-Ramírez S, Pérez-Fragoso A, et al. Metabolomics analysis reveals a modified amino acid metabolism that correlates with altered oxygen homeostasis in COVID-19 patients. Scientific Reports 2021 11:1 [Internet]. 2021 Mar 18 [cited 2021 Oct 9];11(1):1–12. Available from: https://www.nature.com/articles/s41598-021-85788-0
142. Masoodi M, Peschka M, Schmiedel S, Haddad M, Frye M, Maas C, et al. Disturbed lipid and amino acid metabolisms in COVID-19 patients. Journal of Molecular Medicine [Internet]. 2022 Jan 22 [cited 2022 Mar 5];1:1–14. Available from: https://link.springer.com/article/10.1007/s00109-022-02177-4
143. Strasser B, Sperner-Unterweger B, Fuchs D, Gostner JM, Strasser B, Gostner JM, et al. Mechanisms of Inflammation-Associated Depression: Immune Influences on Tryptophan and Phenylalanine Metabolisms. 2016;
144. Ramanathan M, Pinhal-Enfield G, Hao I, Leibovich SJ. Synergistic Up-Regulation of Vascular Endothelial Growth Factor (VEGF) Expression in Macrophages by Adenosine A2A Receptor Agonists and Endotoxin Involves Transcriptional Regulation via the Hypoxia Response Element in the VEGF Promoter. https://doi.org/101091/mbc.e06-07-0596 [Internet]. 2006 Oct 25 [cited 2021 Aug 25];18(1):14–23. Available from: https://www.molbiolcell.org/doi/abs/10.1091/mbc.e06-07-0596
145. Goralska M, Fleisher LN, McGahan MC. Hypoxia induced changes in expression of proteins involved in iron uptake and storage in cultured lens epithelial cells. Experimental Eye Research [Internet]. 2014 [cited 2021 May 25];125:135–41. Available from: /pmc/articles/PMC4154372/
146. Balogun OO, Fawole A, Osemwinyen E, Balogun B. The Placental Buffer Effect and the Pathophysiology of COVID-19: Possibilities for a Guide Aimed at Pregnant and Postpartum Women Considering Praxis: Theory, Clinical and Laboratory Observation. Journal of Infectious Diseases and Epidemiology [Internet]. 2021 Nov 5 [cited 2021 Dec 9];7(11):234. Available from: https://www.clinmedjournals.org/articles/jide/journal-of-infectious-diseases-and-epidemiology-jide-7-234.php?jid=jide
147. Ali RA, Gandhi AA, Meng H, Yalavarthi S, Vreede AP, Estes SK, et al. Adenosine receptor agonism protects against NETosis and thrombosis in antiphospholipid syndrome. Nature Communications 2019 10:1 [Internet]. 2019 Apr 23 [cited 2021 Oct 8];10(1):1–12. Available from: https://www.nature.com/articles/s41467-019-09801-x
148. Sailem HZ, al Haj Zen A. Morphological landscape of endothelial cell networks reveals a functional role of glutamate receptors in angiogenesis. Scientific Reports [Internet]. 2020 Dec 1 [cited 2021 Feb 28];10(1):1–14. Available from: https://doi.org/10.1038/s41598-020-70440-0
149. Kimura A, Naka T, Nohara K, Fujii-Kuriyama Y, Kishimoto T. Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proceedings of the National Academy of Sciences [Internet]. 2008 Jul 15 [cited 2021 Oct 15];105(28):9721–6. Available from: https://www.pnas.org/content/105/28/9721
150. Ghiboub M, Verburgt CM, Sovran B, Benninga MA, de Jonge WJ, van Limbergen JE. Nutritional therapy to modulate tryptophan metabolism and aryl hydrocarbon-receptor signaling activation in human diseases. Vol. 12, Nutrients. MDPI AG; 2020. p. 1–21.
151. Dancey JT, Deubelbeiss KA, Harker andFinch LACA. Neutrophil kinetics in man. Journal of Clinical Investigation. 1976;58(3):705–15.
152. Bories GFP, Leitinger N. Macrophage metabolism in atherosclerosis. FEBS Letters [Internet]. 2017;591(19):3042–60. Available from: http://doi.wiley.com/10.1002/1873-3468.12786
153. Moon P, Minhas PS. Reexamining IFN-γ Stimulation of De Novo NAD+ in Monocyte-Derived Macrophages [Internet]. Vol. 11, International Journal of Tryptophan Research. SAGE Publications Ltd; 2018 [cited 2021 Feb 21]. p. 12–9. Available from: /pmc/articles/PMC5958421/
154. Zhu J, Luo L, Tian L, Yin S, Ma X, Cheng S, et al. Aryl Hydrocarbon Receptor Promotes IL-10 Expression in Inflammatory Macrophages Through Src-STAT3 Signaling Pathway. Frontiers in Immunology. 2018 Sep 19;0(SEP):2033.
155. Masuda K, Kimura A, Hanieh H, Nguyen NT, Nakahama T, Chinen I, et al. Aryl hydrocarbon receptor negatively regulates LPS-induced IL-6 production through suppression of histamine production in macrophages. International Immunology [Internet]. 2011 Oct 1 [cited 2021 Aug 26];23(10):637–45. Available from: https://academic.oup.com/intimm/article/23/10/637/719147
156. Gonzaga L, de Assis Barros D’ F, Zanella E, De LGF. Out of Sight, Out of Mind, Right? Not in COVID-19 Shock or Anaerobic and Exhaustive Shock versus Septic Shock Dilemma That Means to Live or Die. Emergency Attention and a Necessity of Trials. Open Journal of Emergency Medicine [Internet]. 2022 Feb 11 [cited 2022 Apr 22];10(1):19–47. Available from: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=115450
157. Lee JS, Shin EC. The type I interferon response in COVID-19: implications for treatment [Internet]. Vol. 20, Nature Reviews Immunology. Nature Research; 2020 [cited 2021 Feb 21]. p. 585–6. Available from: https://doi.org/10.1038/
158. Watchorn J, Huang DY, Joslin J, Bramham K, Hutchings SD. Critically Ill COVID-19 Patients With Acute Kidney Injury Have Reduced Renal Blood Flow and Perfusion Despite Preserved Cardiac Function: A Case-Control Study Using Contrast-Enhanced Ultrasound. Shock [Internet]. 2021 Apr 1 [cited 2021 Dec 5];55(4):479–87. Available from: https://journals.lww.com/shockjournal/Fulltext/2021/04000/Critically_Ill_COVID_19_Patients_With_Acute_Kidney.7.aspx
159. Singh R, Bajpai M, Yadav P, Kumar Maheshwari A, Kumar S, Agrawal S, et al. Sustained expression of inflammatory monocytes and activated T cells in COVID-19 patients and recovered convalescent plasma donors Title: Sustained expression of inflammatory monocytes and activated T cells in COPLA donors. [cited 2021 Oct 16]; Available from: https://doi.org/10.1101/2020.11.17.20233668
160. Grant RS. Indoleamine 2,3-Dioxygenase Activity Increases NAD+ Production in IFN-γ-Stimulated Human Primary Mononuclear Cells. Int J Tryptophan Res [Internet]. 2018 Jan 8 [cited 2021 Feb 21];11:1178646917751636. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29343967
161. Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nature Reviews Molecular Cell Biology 2021 23:1 [Internet]. 2021 Oct 5 [cited 2022 Feb 24];23(1):3–20. Available from: https://www.nature.com/articles/s41580-021-00418-x
162. Qvisth V, Hagström-Toft E, Enoksson S, Bolinder J. Catecholamine Regulation of Local Lactate Production in Vivo in Skeletal Muscle and Adipose Tissue: Role of β-Adrenoreceptor Subtypes. The Journal of Clinical Endocrinology & Metabolism [Internet]. 2008 Jan 1 [cited 2022 May 6];93(1):240–6. Available from: https://academic.oup.com/jcem/article/93/1/240/2598605
163. Kreisberg RA. Lactate homeostasis and lactic acidosis. Annals of Internal Medicine. 1980;92(2 I):227–37.
164. Ham M, Lee JW, Choi AH, Jang H, Choi G, Park J, et al. Macrophage Glucose-6-Phosphate Dehydrogenase Stimulates Proinflammatory Responses with Oxidative Stress. Molecular and Cellular Biology [Internet]. 2013 Jun 15 [cited 2022 May 5];33(12):2425. Available from: /pmc/articles/PMC3700093/
165. Kelder T, Pico AR, Hanspers K, van Iersel MP, Evelo C, Conklin BR. Mining Biological Pathways Using WikiPathways Web Services. PLoS ONE [Internet]. 2009 Jul 30 [cited 2022 May 4];4(7):6447. Available from: /pmc/articles/PMC2714472/
166. Iepsen UW, Plovsing RR, Tjelle K, Foss NB, Meyhoff CS, Ryrsø CK, et al. The role of lactate in sepsis and COVID-19: Perspective from contracting skeletal muscle metabolism. Exp Physiol [Internet]. 2021 [cited 2021 Dec 9]; Available from: https://pubmed.ncbi.nlm.nih.gov/34058787/
167. Caniggia I, Mostachfi H, Winter J, Gassmann M, Lye SJ, Kuliszewski M, et al. Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFβ3. Journal of Clinical Investigation [Internet]. 2000 [cited 2021 Aug 15];105(5):577. Available from: /pmc/articles/PMC289179/
168. Miao D, Li DY, Chen M, Zhao MH. Platelets are activated in ANCA-associated vasculitis via thrombin-PARs pathway and can activate the alternative complement pathway. Arthritis Research and Therapy [Internet]. 2017 Nov;19(1):252. Available from: https://arthritis-research.biomedcentral.com/articles/10.1186/s13075-017-1458-y
169. Kow CS, Hasan SS. The use of antiplatelet agents for arterial thromboprophylaxis in COVID-19. Revista Espanola De Cardiologia (English Ed) [Internet]. 2021 Jan [cited 2021 Oct 5];74(1):114. Available from: /pmc/articles/PMC7455174/
170. Ageno W. Arterial and Venous Thrombosis: Clinical Evidence for Mechanistic Overlap. Blood. 2014;124(21):SCI--3--SCI--3.
171. Bozzani A, Arici V, Tavazzi G, Franciscone MM, Danesino V, Rota M, et al. Acute arterial and deep venous thromboembolism in COVID-19 patients: Risk factors and personalized therapy. Surgery (United States). 2020;168(6):987–92.
172. Mohapatra SR, Sadik A, Sharma S, Poschet G, Gegner HM, Lanz T v., et al. Hypoxia Routes Tryptophan Homeostasis Towards Increased Tryptamine Production. Frontiers in Immunology. 2021 Feb 19;0:8.
173. Monneret G, Lepape A, Voirin N, Bohé J, Venet F, Debard AL, et al. Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock. Intensive Care Medicine. 2006;32(8):1175–83.
174. Manzoli TF, Delgado AF, Troster EJ, de Carvalho WB, Antunes ACB, Marques DM, et al. Lymphocyte count as a sign of immunoparalysis and its correlation with nutritional status in pediatric intensive care patients with sepsis: A pilot study. Clinics [Internet]. 2016 Nov;71(11):644–9. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-59322016001100644&lng=en&nrm=iso&tlng=en
175. Fanelli G, Romano M, Nova-Lamperti E, Sunderland MW, Nerviani A, Scottà C, et al. PD-L1 signaling on human memory CD4+ T cells induces a regulatory phenotype. PLOS Biology [Internet]. 2021 Apr 1 [cited 2022 Apr 20];19(4):e3001199. Available from: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001199
176. Rha MS, Jeong HW, Ko JH, Choi Y, Peck KR, Shin EC, et al. PD-1-Expressing SARS-CoV-2-Specific CD8 + T Cells Are Not Exhausted, but Functional in Patients with COVID-19 ll PD-1-Expressing SARS-CoV-2-Specific CD8 + T Cells Are Not Exhausted, but Functional in Patients with COVID-19. Immunity [Internet]. 2021 [cited 2021 Feb 14];54:44-52.e3. Available from: https://doi.org/10.1016/j.immuni.2020.12.002
177. Pispa J, Thesleff I. Mechanisms of ectodermal organogenesis. Developmental Biology. 2003 Oct 15;262(2):195–205.
178. Jiménez-Rojo L, Granchi Z, Graf D, Mitsiadis TA. Stem cell fate determination during development and regeneration of ectodermal organs. Frontiers in Physiology. 2012;3 APR:107.
179. Silvagno F, Vernone A, Pescarmona GP. The Role of Glutathione in Protecting against the Severe Inflammatory Response Triggered by COVID-19. Antioxidants [Internet]. 2020 Jul;9(7):624. Available from: https://www.mdpi.com/2076-3921/9/7/624
180. Edalatifard M, Akhtari M, Salehi M, Naderi Z, Jamshidi A, Mostafaei S, et al. Intravenous methylprednisolone pulse as a treatment for hospitalised severe COVID-19 patients: results from a randomised controlled clinical trial. European Respiratory Journal [Internet]. 2020;56(6):2002808. Available from: /pmc/articles/PMC7758541/?report=abstract
181. Zaitsev AA, Golukhova EZ, Mamalyga ML, Chernov SA, Rybka MM, Kryukov E v, et al. Efficacy of methylprednisolone pulse therapy in patients with COVID-19. Clinical Microbiology and Antimicrobial Chemotherapy. 2020;22(2):88–91.
182. Sauñe PM, Bryce-Alberti M, Portmann-Baracco AS, Accinelli RA. Methylprednisolone pulse therapy: An alternative management of severe COVID-19. Respiratory Medicine Case Reports [Internet]. 2020 Jul;31. Available from: https://pubmed.ncbi.nlm.nih.gov/32995261/
183. Salton F, Confalonieri P, Meduri GU, Santus P, Harari S, Scala R, et al. Prolonged Low-Dose Methylprednisolone in Patients With Severe COVID-19 Pneumonia. Open Forum Infectious Diseases [Internet]. 2020;7(10). Available from: https://academic.oup.com/ofid/article/doi/10.1093/ofid/ofaa421/5904996
184. Salton F, Confalonieri P, Meduri GU, Santus P, Harari S, Scala R, et al. Prolonged Low-Dose Methylprednisolone in Patients With Severe COVID-19 Pneumonia. Open Forum Infectious Diseases [Internet]. 2020;7(10). Available from: https://academic.oup.com/ofid/article/doi/10.1093/ofid/ofaa421/5904996
185. Zanella LGF de ABD, Paraskevopoulos DK de S, Galvão ã L de L, o, Yamaguti A, Zanella LGF de ABD, et al. Methylprednisolone Pulse Therapy in COVID-19 as the First Choice for Public Health: When Right Timing Breaks Controversies—Emergency Guide. Open Journal of Emergency Medicine [Internet]. 2021 Jul 2 [cited 2021 Aug 27];9(3):84–114. Available from: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=111400