1Fendrick, A.M., Monto, A. S., Nightengale, B. & Sarnes, M. The economic burden of non-influenza-related viral respiratory tract infection in the United States. Arch. Intern. Med. 163, 487–494, doi:10.1001/archinte.163.4.487 (2003).
2Iuliano, A.D. et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 391, 1285–1300, doi:10.1016/S0140–6736(17)33293–2 (2018).
3Nicholson, K. G., Kent, J., Hammersley, V. & Cancio, E. Acute viral infections of upper respiratory tract in elderly people living in the community: comparative, prospective, population based study of disease burden. BMJ 315, 1060–1064 (1997).
4Galanti, M. et al. Rates of asymptomatic respiratory virus infection across age groups. Epidemiol. Infect. 147, e176, doi:10.1017/S0950268819000505 (2019).
5James, S. L. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858, doi:10.1016/s0140–6736(18)32279–7 (2018).
6Roth, G. A. et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1736–1788, doi:10.1016/s0140–6736(18)32203–7 (2018).
7Li, Q. et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med., doi:10.1056/NEJMoa2001316 (2020).
8Shiu, E. Y. C., Leung, N. H. L. & Cowling, B. J. Controversy around airborne versus droplet transmission of respiratory viruses: implication for infection prevention. Curr. Opin. Infect. Dis. 32, 372–379, doi:10.1097/QCO.0000000000000563 (2019).
9Tellier, R., Li, Y., Cowling, B. J. & Tang, J. W. Recognition of aerosol transmission of infectious agents: a commentary. BMC Infect. Dis. 19, 101, doi:10.1186/s12879–019–3707-y (2019).
10Xiao, J. et al. Nonpharmaceutical Measures for Pandemic Influenza in Nonhealthcare Settings-Personal Protective and Environmental Measures. Emerg. Infect. Dis. 26, doi:10.3201/eid2605.190994 (2020).
11Kutter, J. S., Spronken, M. I., Fraaij, P. L., Fouchier, R. A.M. & Herfst, S. Transmission routes of respiratory viruses among humans. Curr. Opin. Virol. 28, 142–151, doi:10.1016/j.coviro.2018.01.001 (2018).
12Cowling, B. J. & Leung, G. M. Epidemiological research priorities for public health control of the ongoing global novel coronavirus (2019-nCoV) outbreak. Euro Surveill. 25, doi:10.2807/1560–7917.ES.2020.25.6.2000110 (2020).
13MacIntyre, C. R. & Chughtai, A. A. Facemasks for the prevention of infection in healthcare and community settings. BMJ 350, h694, doi:10.1136/bmj.h694 (2015).
14Rockwood, C. A. The Surgical Mask: Its Development, Usage, and Efficiency. AMA Arch. Surg. 80, 963, doi:10.1001/archsurg.1960.01290230081010 (1960).
15Martin, S. B., Jr. & Moyer, E. S. Electrostatic respirator filter media: filter efficiency and most penetrating particle size effects. Appl. Occup. Environ. Hyg. 15, 609–617, doi:10.1080/10473220050075617 (2000).
16Derrick, J. L., Li, P. T., Tang, S. P. & Gomersall, C. D. Protecting staff against airborne viral particles: in vivo efficiency of laser masks. J. Hosp. Infect. 64, 278–281, doi:10.1016/j.jhin.2006.06.021 (2006).
17Li, Y. et al. In vivo protective performance of N95 respirator and surgical facemask. Am. J. Ind. Med. 49, 1056–1065, doi:10.1002/ajim.20395 (2006).
18Harnish, D. A. et al. Challenge of N95 filtering facepiece respirators with viable H1N1 influenza aerosols. Infect. Control Hosp. Epidemiol. 34, 494–499, doi:10.1086/670225 (2013).
19Cowling, B. J., Zhou, Y., Ip, D. K., Leung, G. M. & Aiello, A. E. Face masks to prevent transmission of influenza virus: a systematic review. Epidemiol. Infect. 138, 449–456, doi:10.1017/s0950268809991658 (2010).
20Johnson, D. F., Druce, J. D., Birch, C. & Grayson, M. L. A quantitative assessment of the efficacy of surgical and N95 masks to filter influenza virus in patients with acute influenza infection. Clin. Infect. Dis. 49, 275–277, doi:10.1086/600041 (2009).
21Milton, D. K., Fabian, M. P., Cowling, B. J., Grantham, M. L. & McDevitt, J. J. Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks. PLoS Pathog. 9, e1003205, doi:10.1371/journal.ppat.1003205 (2013).
22McDevitt, J. J. et al. Development and Performance Evaluation of an Exhaled-Breath Bioaerosol Collector for Influenza Virus. Aerosol Sci Technol 47, 444–451, doi:10.1080/02786826.2012.762973 (2013).
23Yan, J. et al. Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. Proc. Natl. Acad. Sci. U.S. A. 115, 1081–1086, doi:10.1073/pnas.1716561115 (2018).
24Chan, K. H., Peiris, J. S., Lim, W., Nicholls, J. M. & Chiu, S. S. Comparison of nasopharyngeal flocked swabs and aspirates for rapid diagnosis of respiratory viruses in children. J. Clin. Virol. 42, 65–69, doi:10.1016/j.jcv.2007.12.003 (2008).
25R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).
26Yee, T. W. Vector Generalized Linear and Additive Models: With an Implementation in R. (Springer New York, 2016).
27Huynh, K. N., Oliver, B. G., Stelzer, S., Rawlinson, W. D. & Tovey, E. R. A new method for sampling and detection of exhaled respiratory virus aerosols. Clin. Infect. Dis. 46, 93–95, doi:10.1086/523000 (2008).
28Stelzer-Braid, S. et al. Exhalation of Respiratory Viruses by Breathing, Coughing, and Talking. J. Med. Virol. 81, 1674–1679, doi:Doi 10.1002/Jmv.21556 (2009).
29Turchiarelli, V. et al. Repeated virus identification in the airways of patients with mild and severe asthma during prospective follow-up. Allergy 66, 1099–1106, doi:10.1111/j.1398–9995.2011.02600.x (2011).
30Tovey, E. R. et al. Rhinoviruses significantly affect day-to-day respiratory symptoms of children with asthma. J. Allergy Clin. Immunol. 135, 663–669.e612, doi:10.1016/j.jaci.2014.10.020 (2015).
31Booth, T. F. et al. Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units. J. Infect. Dis. 191, 1472–1477, doi:10.1086/429634 (2005).
32Kim, S. H. et al. Extensive Viable Middle East Respiratory Syndrome (MERS) Coronavirus Contamination in Air and Surrounding Environment in MERS Isolation Wards. Clin. Infect. Dis. 63, 363–369, doi:10.1093/cid/ciw239 (2016).
33Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–574, doi:10.1016/S0140–6736(20)30251–8 (2020).
34Johnson, G. R. & Morawska, L. The mechanism of breath aerosol formation. J. Aerosol Med. Pulm. Drug Deliv. 22, 229–237 (2009).
35Jennings, L. C. & Dick, E. C. Transmission and control of rhinovirus colds. Eur. J. Epidemiol. 3, 327–335, doi:10.1007/bf00145641 (1987).
36Wei, J. & Li, Y. Airborne spread of infectious agents in the indoor environment. Am. J. Infect. Control 44, S102–108, doi:10.1016/j.ajic.2016.06.003 (2016).
37Fabian, P. et al. Influenza virus in human exhaled breath: an observational study. PLoS One 3, e2691, doi:10.1371/journal.pone.0002691 (2008).
38Fabian, P., Brain, J., Houseman, E. A., Gern, J. & Milton, D. K. Origin of exhaled breath particles from healthy and human rhinovirus-infected subjects. J. Aerosol Med. Pulm. Drug Deliv. 24, 137–147, doi:10.1089/jamp.2010.0815 (2011).
39Dijkman, R. et al. Isolation and characterization of current human coronavirus strains in primary human epithelial cell cultures reveal differences in target cell tropism. J. Virol. 87, 6081–6090, doi:10.1128/JVI.03368–12 (2013).
40Jacobs, S. E., Lamson, D. M., St George, K. & Walsh, T. J. Human rhinoviruses. Clin. Microbiol. Rev. 26, 135–162, doi:10.1128/CMR.00077–12 (2013).