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Abstract

In this paper, the Field Programmable Gate Arrays (FPGAs) implementation of
multiple signal classification (MUSIC) algorithm based on polarization sensitive
array is discussed for the first time. Directly embedding the conventional
complex-valued MUSIC in FPGA will waste a lot of hardware resources and
involve high computational burden. Thus, we propose a real-valued direction of
arrival (DOA) estimation method based on polarization sensitive arrays for FPGA
implementation in this paper. The proposed method introduces a linear
transformation on the received signal, thus simplifying the subsequent
calculations of the polarization MUSIC algorithm. In addition, the whole FPGA
implementation scheme using the proposed real-valued MUSIC based on
distributed polarization-sensitive arrays is also developed in this paper. The
proposed scheme releases the computational burden via exploiting the parallel
calculation of the covariance matrix, the parallel Jacobi algorithm of multiple
cleaning of eigenvalue decomposition (EVD), the multi-level spectral peak search
method, and the pipelining of each module. The multi-level and multi-group
cleaning in the EVD module reuse the resources occupied by a group of cleaning,
and the spectral peaks are serially searched in the peak search module.
Consequently, compared with the complex-valued MUSIC, the hardware resource
consumption and computation burden is dramatically reduced in the proposed
scheme.

Keywords: DOA estimation; FPGA; MUSIC algorithm; Polarization sensitive
array

1.Introduction

Direction of arrival (DOA) estimation is one of the main parts in array signal pro-

cessing [1], and has gained considerable attentions in many fields, including the

spectrum sharing [2] and automotive radar [3, 4]. For scalar arrays, many effective

methods have been developed in the last decades [5–7]. However, the capability

of scalar array to deal with the complex environment is limited. To overcome the

limitations in scalar arrays, the polarization sensitive array, one kind of the vector

arrays, has been investigated [8, 9]. The polarization sensitive array element can

obtain both the spatial information and polarization information from the incident

electromagnetic wave in space according to its polarization sensitive characteristics.

Compared with ordinary array, polarization sensitive array has the advantages of

high anti-interference ability, clear resolution and strong signal detection ability [10].

Therefore, the polarization sensitive array has a wide range of applications [11–13].
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On the other hand, multiple signal classification (MUSIC) algorithm, as a classical

DOA estimation algorithm, has the advantages of high precision, high resolution

and universal array applicability [14]. The use of MUSIC in polarization sensitive

array has been well studied in theory [15]. However, the corresponding hardware

implementation scheme has not been investigated before. Therefore, it is of great

significance to develop the hardware implementation of the MUSIC algorithm based

on polarization sensitive arrays. At present, DOA estimation is mostly embedded

in the multi-core Digital Signal Processor (DSP), e.g., TMS320C6678, since many

resources are integrated in the DSP and can be directly called. However, tasks are

serially processed in DSP, thus limiting the running time of MUSIC algorithm to

millisecond level. Such running time usually cannot meet the real-time requirement

of DOA estimation. With the rapid development of Field Programmable Gate Ar-

ray (FPGA) technology, the capacity of FPGA chips is getting larger and larger,

and the provided IP libraries are becoming more and more comprehensive. Con-

sequently, the advantages of high FPGA parallelism are gradually revealed, pro-

viding an outstanding alternative for the hardware implementation to improve the

real-time performance of DOA estimates. Reference [16] proposed an antenna ar-

ray reduction and covariance normalization technology, where the one-dimensional

search is realized on ZYNQ (XC7Z020-CLG484-1) platform. As a result, DOA es-

timation can be completed in only 2µs at 100MHz working frequency. However,

this technology is only applicable to conventional scalar array. In addition, the cor-

responding algebraic eigenvalue decomposition (EVD) method is only suitable for

the case that the dimension of covariance matrix is less than 5, which is rather

limited. Reference [17] migrated the two-dimensional search of MUSIC algorithm

to the Xilinx Virtex-6LX130T FPGA, where the serial systolic array structure of

Jacobi algorithm and the multi-scale peak search method are used. It takes 1ms

to complete one DOA estimation at the operating frequency of 100MHz. In refer-

ence [18], the classical MUSIC algorithm on the uniform symmetric circular array

was implemented and a MUSIC algorithm with complete real-valued calculation was

proposed. In order to reduce the resource consumption of parallel Jacobi algorithm,

a novel systolic array structure is proposed in [18]. However, it brings obstacles to

the real-time performance of DOA estimation, and the running time on hardware

is in milliseconds. Aiming at the heavy computational load and time-consuming

problem of EVD, reference [19] optimized the Jacobi algorithm and proposed an

one-time rotation acceleration method of parallel Jacobi algorithm. Nevertheless,

the running time is still more than 100ms. Reference [20] gave the theoretical anal-

ysis of several matrix decomposition algorithms on DOA estimation performance

when implemented on FPGA. The conclusion is that the time-consuming of these

decomposition methods is at the microseconds level. So far, the research on the

FPGA implementation of MUSIC algorithm with high resolution is based on tradi-

tional scalar array. The research on the FPGA implementation of MUSIC algorithm

based on polarization sensitive array is still open, and the research on improving

the real-time performance of DOA estimation is also of great significance.

In this paper, an efficient hardware implementation scheme of 2D MUSIC al-

gorithm based on polarization sensitive arrays is investigated under the FPGA

framework. In order to improve the hardware efficiency, a real-valued preprocessing
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method is proposed via fully exploiting the characteristics of the receive array and

the property of the corresponding steering vector. We consider a distributed polar-

ization sensitive array with all the elements placed as a centrosymmetric uniform

circular array in this paper. According to the centrosymmetric structure, a lin-

ear transformation matrix is constructed to describe the relationship between the

real and imaginary part of the steering vector. The linear transformation matrix is

multiplied by the received signal to obtain real-valued received data. By perform-

ing real-valued processing, the calculation of the polarization MUSIC algorithm is

effectively simplified.

On the other hand, the FPGA implementation scheme mainly consists of 5 mod-

ules, i.e., real number preprocessing, covariance matrix calculation, EVD, noise

subspace determination, and spectral peak search. The time-consuming of the algo-

rithm is shortened by adopting parallel calculation in the covariance matrix calcu-

lation module, parallel Jacobi algorithm with multiple sweeps in the EVD module,

and multi-level search in the spectral peak search module. According to the char-

acteristics of independent calculation of each module, the pipeline working mode is

designed, which can fully utilize the characteristics of FPGA parallel computing.

From the experimental results, the proposed scheme can complete one DOA estima-

tion based on polarization sensitive array in µs level, while the estimation accuracy

is well guaranteed.

Dominant contributions of this paper are summarized as follows: (1) The FPGA

implementation of MUSIC based on polarization sensitive array is discussed in this

paper for the first time. Previous relevant research mainly focuses on the scalar

array. (2) A real-valued preprocessing is proposed to simplify the subsequent calcu-

lations, where the received signal is transformed to real-valued form by considering

the centrosymmetric structure of the uniform circular receive array. (3) The whole

FPGA implementation scheme is developed, including the design of each module

and the connection between modules.

The rest of the paper is organized as follows. In Sect.2, the principle of the 2D

polarization MUSIC algorithm is introduced. In Sect.3, the implementation of the

2D polarization MUSIC on FPGA is presented in detail. Sect.4 shows the results of

several typical experiments and gives the performance evaluations. Sect.5 concludes

this paper.

2.MUSIC algorithm based on Polarization Sensitive Array

The array shown in Figure 1 is a distributed polarization sensitive array consist-

ing of single dipoles, where different dipoles have different polarization modes and

directions.

Consider a distributed polarization sensitive array composed of N (N=2K or

N=2K+1) dipoles, and assume that M far-field narrowband fully polarization sig-

nals impinge on the array, where the azimuth and elevation of the mth signal are

θm and φm, and the polarization auxiliary angle and polarization phase are γm and

ηm, respectively. In addition, assume that the noise is additive Gaussian white noise

(AWGN) with zero mean and variance σ2, and the incident signals are uncorrelated

and independent of the noise. Then, the received signal of the polarization sensitive
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Figure 1 Distributed polarization sensitive array

array is expressed as:

X (t) =

M∑

m=1

aθm,φm,γm,ηm
sm(t) +N (t) = AS(t) +N (t) (1)

where A = [aθ1,φ1,γ1,η1
, · · · ,aθM ,φM ,γM ,ηM

] is the spatial and polar domain joint

steering vector matrix of the signal, S(t) = [s1(t), · · · , sM (t)]T is the vector of M

independent incident sources, and N (t) = [n1(t), · · · , nN (t)]T is the noise vector.

In equation (1), aθm,φm,γm,ηm
(m = 1, 2, · · · ,M) is the steering vector of the mth

incident signal. Denote aθm,φm,γm,ηm
by aθ,φ,γ,η, and the corresponding definition

is:

aθ,φ,γ,η =




u1(θ, φ)

u2(θ, φ)

...

uN (θ, φ)


B

︸ ︷︷ ︸
Υθ,φ

[
− sin θ cosφ cos θ

cos θ cosφ sin θ

]

︸ ︷︷ ︸
Ξθ,φ

[
cos γ

sin γejη

]

︸ ︷︷ ︸
hγ,η

= Υθ,φΞθ,φhγ,η = Dθ,φhγ,η

(2)

where B = [B1,B2, ...,BN ]
T
is the polarization sensitive matrix depending on the

polarization sensitive array structure and polarization mode of each dipole. For

distributed polarization sensitive array, if the pointing angle of the nth array element

is αn, then Bn = [cosαn, sinαn]
T.

For the nth array element, the spatial steering vector un(θ, φ) has the following

form:

un(θ, φ) = exp {−j2πfτn} (3)
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where f is the signal frequency and τn is the spatial delay between different array

elements. For a planar array, if the origin is taken as the reference point, the specific

form is:

τn =
1

c
(xn sin θ cosφ+ yn sin θ sinφ) (4)

where c = 3× 108 m/s is the speed of light and (xn, yn) is the planar coordinate of

the nth array element.

The covariance matrix of the received signals is:

R = E
[
XX

H
]
= AE

[
SS

H
]
A

H + σ2
I = ARSA

H + σ2
I (5)

Since signal and noise are independent of each other, the covariance matrix can be

decomposed into signal subspace and noise subspace, where RS is the covariance

matrix of the signal and ARSA
H is the signal part [21]. The EVD of the covariance

matrix is:

R = U SΣSU
H
S +UNΣNU

H
N (6)

where U S , referred as the signal subspace, is composed of eigenvectors correspond-

ing toM largest eigenvalues, andUN is the noise subspace composed of eigenvectors

corresponding to the remaining N −M small eigenvalues [22].

Since the steering vectors associated with the signal incident directions are an-

other group of bases of the signal subspace, then, utilizing the orthogonality between

signal and noise subspace, the spatial and polar domain spectral function is con-

structed as:

PMUSIC =
1

aH
θ,φ,γ,ηUNU

H
Naθ,φ,γ,η

(7)

It is observed that equation (7) has four unknown variables, i.e., θ, φ, γ and η.

Therefore, a four-dimensional spectral peak search is required to obtain the esti-

mated DOAs. Such kind of search has quite a lot of search nodes, thus leading to

a high time consumption when implemented in hardware. To cut down the search

time of spectral peak search, it is necessary to reduce the degree of freedom of the

spectral function.

According to equation (2), the MUSIC spectrum in equation (7) can be further

expressed as:

PMUSIC =
1

(Dθ,φhγ,η)
H
UNU

H
N (Dθ,φhγ,η)

=
1

h
H
γ,η

(
D

H
θ,φ

UNU
H
NDθ,φ

)
hγ,η

(8)

where hγ,η is called the polarization vector, which is a full rank vector independent

of DOA parameters, defined as:

hγ,η=

[
cos γ

sin γejη

]
(9)
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Therefore, hγ,η in equation (8) can be omitted, and the spatial spectral function of

polarization MUSIC is simplified to:

PMUSIC (θ, φ) = arg
θ,φ

max
[
det
(
D

H
θ,φ

UNU
H
NDθ,φ

)]
−1

(10)

Equation (10) is called the reduced-dimensional spectral function of polarization

MUSIC algorithm.

3.FPGA implementation of polarization MUSIC algorithm

The uniform circular polarization sensitive array with centrosymmetric structure,

as shown in Figure 1, is adopted in this paper, since uniform circular array is pop-

ular in industry. On the Virtex7-690T FPGA chip of Xilinx Company, the Verilog

or System Verilog language is used to carry out comprehensive simulation on the

Vivado platform.

Since the received signal is complex-valued data, the complex EVD and spectral

peak search process of the MUSIC algorithm will consume a lot of hardware and

time resources during FPGA implementation, bringing huge obstacles to improve

the real-time performance of DOA estimation. Therefore, we hereby propose a real-

valued preprocessing method that are suitable for uniform circular polarization

sensitive arrays, which will reduce the computational complexity exponentially and

improve the real-time performance of DOA estimation. Figure 2 shows the overall

flow chart of the algorithm implementation.

Real-valued 

preprocessing
EVD

Noise 

subspace 

determination 

Spectral 

peak 

search

Input OutputCorrelation 

matrix 

calculation

Figure 2 Algorithm Implementation Flowchart

3.1 Real-valued preprocessing

The steering vector omitting the polarization vector hγ,η is:

Dθ,φ =




u1(θ, φ)

u2(θ, φ)
...

uN (θ, φ)







cosα1

cosα2

...

cosαN

sinα1

sinα2

...

sinαN




[
− sin θ cosφ cos θ

cos θ cosφ sin θ

]

=
[
DH DV

]

(11)

According to the central symmetry relationship of the distributed polarization sen-

sitive array element, when N is even, the coordinates and pointing angles of the 1st

and (K+1)th array elements satisfy:

(xK+1, yK+1) = (−x1,−y1) (12)
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αK+1 = α1 + π (13)

According to equation (4), we get:

τK+1 = −τ1 (14)

Therefore, the 1st and (K+1)th entry of DH are respectively expressed as:

DH (1) = u1(θ, φ) (cos θ sinα1 − sin θ cosα1)

= [cos (2πfτ1)− j sin (2πfτ1)] (cos θ sinα1 − sin θ cosα1)
(15)

DH (K + 1) = uK+1(θ, φ) (cos θ sinαK+1 − sin θ cosαK+1)

= [cos (2πfτK+1)− j sin (2πfτK+1)] (cos θ sinαK+1 − sin θ cosαK+1)

= [cos (2πfτ1) + j sin (2πfτ1)] (− cos θ sinα1 + sin θ cosα1)

= [− cos (2πfτ1)− j sin (2πfτ1)] (cos θ sinα1 − sin θ cosα1)

(16)

where the Eulerian formulation is exploited. According to equation (15) and (16),

it is obtained that the real parts of DH (1) and DH (K + 1) are opposite, while the

imaginary parts are the same. Additionally, there is the same symmetrical relation-

ship between DV (1) and DV (K + 1). The same relationship also exists for other

array elements with distance K. When N is odd, the centrosymmetric elements in

the array also meet the above symmetry relationship. Therefore, we construct a

linear transformation matrix U to describe such relationship as:

U =





[
IK −IK

iIK iIK

]
, N = 2K




IK O −IK

O
T

√
2 O

T

iIK O iIK


 , N = 2K + 1

(17)

where IK is the identity matrix of order K and O is the zero-valued column vector

with proper dimension. Performing this linear transformation on the received signal

X (t) yields:

Y (t) = UX (t) = UAS(t) +UN (t) (18)

At this time, Y (t) is still complex data, but useful information only exists in the

real part. On the other hand, for hardware implementation, the real and imaginary

data are separately input into the system as IQ data stream. Thus, we only need to

consider the real part of Y (t). Figure 3 shows a schematic diagram of the FPGA

implementation of the real-valued processing when N is even. Subtracting the real

parts and adding the imaginary parts for all pairs of elements that are of distance

K, the complex-valued data is transformed into real-valued data. When N = 10, 10

adder IP cores are required to complete the calculation, and only 2 clock cycles are

consumed, which is easy to implement.



Liu et al. Page 8 of 20

•  

•  

•  

•  

•  

•  

Data1_real

DataK+1_real

DataK_real

Data2K_real

•  

•  

•  

•  

•  

•  

Data1_imag

DataK+1_imag

DataK_imag

Data2K_imag

Opposite 

number

•  

•  

•  

•  

•  

•  

•  

•  

•  

xl2K

xlK+1

xlK

xl1

Figure 3 Schematic diagram of the implementation of real-valued preprocessing

After preprocessing, the steering vector becomes:

DR = UDθ,φ

=





[
2Re (DH(1 : K)) 2Re (DV(1 : K))

−2Im (DH(K + 1 : 2K)) −2Im (DV(K + 1 : 2K))

]
, N = 2K




2Re (DH(1 : K))√
2Re (DH(K + 1))

2Re (DV(1 : K))√
2Re (DV(K + 1))

−2Im (DH(K + 2 : 2K)) −2Im (DV(K + 2 : 2K))


 , N = 2K + 1

(19)

So far, the subsequent calculation of polarization MUSIC algorithm can be com-

pletely finished by real values. Compared with complex-valued calculation, it can

save a lot of hardware resources, shorten the calculation time, and improve the

real-time performance of DOA estimation.

3.2 Calculation of covariance matrix

The formula to obtain the signal covariance matrix R in practice is:

R = E[XX
H] ≈ 1

L

L∑

l=1

x lx
H
l (20)

where X is the signal data received by the array, and L is the number of snapshots.

Hereby, it is only required to calculate the value of the upper triangular element,

since R is a real symmetric matrix after real-valued preprocessing. In addition,

the number of snapshots can be omitted in the calculation, since the averaging

operation has no effect on subsequent calculations. To sum up, the covariance matrix

calculation formula can be expressed as the following form:

R̃ = [x 1,x 2, . . . ,xL][x 1,x 2, . . . ,xL]
T =

L∑

l=1

x lx
T
l (21)
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In the above equation, x l (l = 1, 2, ..., L) is the data obtained by the real-valued

preprocessing of the lth received signal snapshot. The detailed expression of x lx l
T

is:

x lx l
T =




xl1

xl2

...

xlN




[
xl1 xl2 · · · xlN

]
=




x2
l1

xl1xl2 · · · xl1xlN

x2
l2

· · · xl2xlN

. . .
...

x2
lN




(22)

where xln(l = 1, 2, . . . , L, n = 1, 2, . . . , N) is the nth element in x l. The matrix has

a total of N(N +1)/2 upper triangular elements, and each element is obtained by a

multiplier (Multiplier IP core) and an addition accumulator (Accumulator IP core).

3.3 Eigenvalue Decomposition

After obtaining the covariance matrix, we need to perform the corresponding EVD

to get the eigenvalues and eigenvectors. The Jacobi algorithm is one of the most

commonly used EVD algorithms, where a series of rotation transformations are

performed to transform the matrix into a diagonal matrix [23]. In this paper, the

parallel Jacobi algorithm is selected to make full use of the parallel computing

advantages of FPGA and Jacobi algorithm. Using the systolic array structure [24],

the upper triangular elements of the covariance matrix of order N ×N are divided

into N−1 groups, and each group contains [K × (K + 1)]/2 matrix processing units

of order 2 × 2. According to the position of each unit in the covariance matrix, it

can be divided into the diagonal and off-diagonal unit. The parallel grouping and

scheduling rules ensure that the processing units in the same group are independent

and parallel to perform Jacobi rotation. When the number of array elements is

N = 10, the parallel Jacobi grouping is shown in Table 1:

Table 1 10Ö10 Matrix Parallel Jacobi Grouping

Serial number Jacobi Grouping
S1 {(1, 2) (3, 4) (5, 6) (7, 8) (9, 10)}
S2 {(1, 4) (2, 6) (3, 8) (5, 10) (7, 9)}
S3 {(1, 6) (4, 8) (2, 10) (3, 9) (5, 7)}
S4 {(1, 8) (6, 10) (4, 9) (2, 7) (3, 5)}
S5 {(1, 10) (8, 9) (6, 7) (5, 4) (2, 3)}
S6 {(1, 9) (10, 7) (8, 5) (6, 3) (4, 2)}
S7 {(1, 7) (9, 5) (10, 3) (8, 2) (6, 4)}
S8 {(1, 5) (7, 3) (9, 2) (10, 4) (8, 6)}
S9 {(1, 3) (5, 2) (7, 4) (9, 6) (10, 8)}

Then, the value of the rotation angle ϑ is calculated through the diagonal unit,

and the calculation formula is:

ϑ =

{
1
2arc tan

(
2b

aii−ajj

)
, aii ̸= ajj

π
4 sign (b) , aii = ajj

(23)

where aii and ajj are the diagonal elements of the diagonal unit

[
aii b

b ajj

]
, and

b is the off-diagonal element. Similarly, in the off-diagonal unit

[
a b

c d

]
, a and
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d are diagonal elements, b and c are off-diagonal elements. The rotation matrix

corresponding to this diagonal unit is:

Wij =

[
cosϑ sinϑ

− sinϑ cosϑ

]
(24)

The elements of the rotation matrix corresponding to all the diagonal units are

arranged into a matrix according to the rows and columns of the diagonal elements

of the diagonal unit, and the other positions are filled with 0, which is the rotation

matrix of the entire covariance matrix.

The Jacobi rotation operation is performed on the diagonal unit according to the

following equation:

[
a′ii b′

b′ a′jj

]
=

[
cosϑ sinϑ

− sinϑ cosϑ

]T [
aii b

b ajj

][
cosϑ sinϑ

− sinϑ cosϑ

]
(25)

At the same time, the Jacobi rotation operation is performed on the off-diagonal

unit according to the following formula:

[
a′ b′

c′ d′

]
=

[
cosϑ sinϑ

− sinϑ cosϑ

]T [
a b

c d

][
cosϑ sinϑ

− sinϑ cosϑ

]
(26)

Note that the data of the rotation matrix is transferred to all off-diagonal units

simultaneously so that all units can perform Jacobian rotation and update the

eigenvector matrix parallelly. The initial eigenvector matrix of the covariance matrix

is set as V 0 = IN , where IN is the identity matrix of order N. Then, each time

when the rotation is performed, the eigenvectors are updated as:

[
v ′

i

v ′

j

]
= W ij

[
v i

v j

]
(27)

where v i and v j represent the ith row and the jth row of the eigenvector matrix,

respectively.

Since each group performs the same iterative calculation, in order to save re-

sources, a group of hardware resources are repeatedly used N −1 times to complete

the cleaning. Thus, it is necessary to exchange data at the input end and the out-

put end. Data exchange is performed according to the grouping of parallel Jacobian

decomposition, and the exchange formula is:

Ri+1 = W iRiW
T
i = C i

[
W 1

(
H iRiH

T
i

)
W

T
1

]
C

T
i (28)

where W i represents the rotation matrix of the ith group with i = 1, 2, · · · , N − 1,

and H i and C i represents the input and output switching matrix, respectively.

Since the hardware resources of the first group are used cyclically, the remaining

N−2 groups are subjected to elementary row-column transformations based on the

rotation matrix of the first group. In addition, H i and C i are mutually reversed.
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The first-level cleaning is completed until N−1 groups of Jacobi rotations are fin-

ished. In order to save hardware resources, the data exchange operation involves no

matrix multiplication. Instead, a state machine is used to directly perform register

assignment operations. For a 10-order matrix, each level of cleaning needs to com-

plete 9 groups of Jacobi rotations in Table 1. The input control module exchanges

the input data according to the new positions of the elements in the group, and

the output control module exchanges the updated data according to the original

positions in the matrix.

When performing EVD, the more levels the cleaning is performed, the closer the

eigenvalue matrix is to the diagonal matrix, that is, the smaller the error is. However,

at the same time, the time consumption is increased. Therefore, The number of

cleaning levels should be selected according to actual requirements. The FPGA

implementation structure of each group of Jacobi rotations is shown in Figure 4.

The arc-tangent value is calculated by calling Arc Tan mode of CORDIC IP core so

as to obtain the rotation angle, while the sine and cosine value of the rotation angle

is calculated by calling the Sin and Cos mode of the CORDIC IP core. In order

to reduce the error of EVD, this paper adopts the three-level cleaning structure as

shown in Figure 5.

Calculate 
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3.4 Noise subspace determination

In this module, the eigenvalues are firstly sorted, and the noise subspace is then

determined via the rearranged results. The N eigenvalues are sorted in descent

order, where each eigenvalue is compared with the other N eigenvalues in turn, and

the number greater than or equal to the current eigenvalue is the updated sorting

result.

The comparison of eigenvalues is carried out through the operators ”<” and ”==”.

Since the eigenvalue indicates the power of the corresponding signal or noise, the

eigenvalue must be positive. All the N comparison units are launched in parallel.

The input of the ith comparison unit is λi (fixed value) and λj (j = 1, 2, ..., N)

(sequential input), where i and j are input as flag bits at the same time. If the

comparison result of the operator ”<” is 1, then output the result k + 1, where k

represents the current rank of λi. Furthermore, if the comparison result of the oper-

ator ”<” is 0, and the comparison result of the operator ”==” is 1, the output result

is also k+1. Otherwise, keep the output result k unchanged until the comparison is

complete. The final result output is the index of the rearranged λi (i = 1, 2, ..., N).

Figure 6 shows the FPGA implementation schematic diagram of eigenvalue sort-

ing. According to the eigenvalue sorting results, the corresponding eigenvectors are

selected to compose the noise subspace.

<

==

i < j ?

k = k+1

k = k+1

k = k
i

j

k

i


i


j


j


Figure 6 Eigenvalue sorting FPGA implementation structure

3.5 Spectral peak search

In order to search for spectral peaks, the steering vector should be calculated first.

Then, calculate the spectral function using the steering vector and the noise sub-

space. Finally, the spectral peak search is performed.

The real-valued steering vector of the two-dimensional array is:

DR(θ, φ)

=




cos(2πfτ1)
...

cos(2πfτN/2)

sin(2πfτN/2+1)
...

sin(2πfτN )







cosα2

...

cosαN/2

cosαN/2+1

...

cosαN

sinα2

...

sinαN/2

sinαN/2+1

...

sinαN




[
− sin θ cosφ cos θ

cos θ cosφ sin θ

]
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(29)

where (θ, φ)is the DOA of the searching grid, and the corresponding sine and cosine

values can be stored in the ROM according to the search range and step. The

schematic diagram of the implementation of the steering vector calculation is shown

in Figure 7.
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Figure 7 Steering vector calculation diagram

It can be seen from the above analysis that the spectral function of the reduced-

dimensional polarization MUSIC after real-valued processing is expressed as:

PMUSIC = arg
θ,φ

max
[
det
(
D

T
R (θ, φ) ŨNŨ

T

NDR (θ, φ)
)]−1

(30)

where DR (θ, φ) and ŨN are the real-valued steering vector and noise subspace,

respectively. To simplify the calculation, the pseudo spectral function is constructed

as:

P (θ, φ) =

∣∣∣∣∣det
(

N−M∑

i=1

D
T
R (θ, φ) ŨN (i) Ũ

T

N (i)DR (θ, φ)

)∣∣∣∣∣ (31)

where ŨN (i) is ith column vector of ŨN . The spectral peak search is equivalently

converted into the spectral valley search.

Hereby, we take the ith column D
T
R(θ, φ)× ŨN (i)× Ũ

T

N (i)×DR(θ, φ), referred

as the internal cell, as an instance to illustrate the spectrum calculation process in
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FPGA. The corresponding implementation structure is shown in Figure 8. Consid-

ering the single source scenario, the noise subspace is a matrix of order N×(N−1),

indicating that N -1 internal cells are required. Figure 9 is a schematic diagram of

the spectral function calculation.
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Figure 9 Spectral function calculation

Assume that the search ranges for azimuth and elevation are Rθ and Rφ, and the

search steps are ∆θ and ∆φ, respectively. Let I = Rθ/∆θ and J = Rφ/∆φ. Then,

(θ, φ) can be reconstructed into a new matrix of size I×J , which allows the spectral

function P (θ, φ) to be represented as a P matrix of order I × J , namely:

P =




P (θ1, φ1) P (θ2, φ1) · · · P (θI , φ1)

P (θ1, φ2) P (θ2, φ2) · · · P (θI , φ2)
...

...
. . .

...

P (θ1, φJ) P (θ2, φJ) · · · P (θI , φJ)




(32)
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In this way, the spectral peak search problem of the two-dimensional polarization

MUSIC algorithm can be transformed into the problem of searching for local mini-

mization value in P .

For notational simplicity, we use Pi,j to represent P (θi, φj), i = 1, 2, ..., I, j =

1, 2, ..., J . If Pi,j corresponds to a spectral valley, it should be satisfied that the

value of Pi,j is minimum in the adjacent 3×3 region. The schematic diagram of the

spectral valley value associated with the spatial positions is shown in Figure 10. By

searching for all spectral valley positions, and sorting the results in ascent order,

the azimuth and elevation corresponding to the first M minimum spectral valleys

are the estimated DOA parameters.

Pi+1,j-1

Pi,j-1

Pi-1,j-1

Pi+1,j

Pi,j

Pi-1,j

Pi+1,j+1

Pi,j+1

Pi-1,j+1

j-1 j j+1

i-1

i

i+1

Figure 10 Schematic diagram of the valley value of the spectrum

It is seen from the searching progress that the entire spatial domain should be

scanned to obtain all the valleys. In this paper, the azimuth is slowly changed, while

the elevation is fast changed. Specifically, the azimuth is fixed and search valleys

for the entire elevation first. Then, change the azimuth and repeat the searching

operation. In the FPGA implementation, data transmission is performed through

the FIFO IP core to realize the nine-square grid data comparison.

To further reduce the computational burden, we adopt a two-stage search strategy

here. The first stage is a rough search, where a large search step is used. The spec-

tral valley results (θ̂m, φ̂m) (m = 1, 2, · · · ,M) within the search range are obtained

through the previously demonstrated spectrum searching. Then, input the results

serially to the second stage for fine search with a small search step, where the search

range is properly selected around the searching results in first stage. Finally, all the

DOAs (θm, φm) (m = 1, 2, · · · ,M) are estimated. Figure 11 shows the realization of

spectral valley search for the case of 2 sources, where all the valleys are obtained

first and the 2 smallest valleys are then selected.

3.6 Overall block diagram

The overall block diagram consisting of previous modules is shown in Figure 12.

The input of the system is the IQ data stream of N channel, as well as the number

of snapshots and signal frequency. On the other hand, the output is the estimated

DOAs and the corresponding spectral valley values. First, real-valued preprocessing

is performed on the input IQ data stream, and the covariance matrix is calculated

according to the obtained results. Then, the upper triangular element of the real

symmetric covariance matrix is input into the EVD module, where the parallel

Jacobi algorithm is used. The acquired eigenvalues and eigenvectors are next input

into the noise subspace determination module, where the eigenvalues are sorted first,
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and the noise subspace is then obtained by selecting the eigenvectors corresponding

to the N − M smallest eigenvalues. Finally, the spectral peak search module are

exploited to estimate the DOA parameters.
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Figure 12 Overall block diagram of algorithm implementation

In addition, the pipeline processing structure, as shown in Figure 13, is adopted

because the time-consuming of the spectral peak search module is greater than

the sum of the other modules. Therefore, the running time of one estimation is

dominated by the spectral peak search module.
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Figure 13 Data pipeline processing block diagram
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4.Experimental Results and Performance Evaluation

4.1 FPGA Implementation Results and Resource Occupancy

In the first experiment, we examine the hardware resource occupancy and time

consumption of the proposed scheme. Restricted by FPGA capacity, a 10-element

uniform circular array is used in the proposed real-valued polarization MUSIC algo-

rithm, while only 8 elements are used in the traditional complex-valued polarization

MUSIC algorithm. The signal-to-noise ratio (SNR) and the number of snapshots is

20 dB and 100, respectively. Setting the coarse and fine search step as 2➦ and 0.2➦, re-

spectively, the consumed hardware resources and running time are shown in Table 2

and Table 3, respectively, where the searching range is θ ∈ [0, 360◦] and φ ∈ [0, 30◦].

It is seen from Table 2 that, for the LUT, FF and DSP resource, the utilization of

the proposed real-valued MUSIC is much less than that of the traditional MUSIC,

indicating that the amount of computation is significantly reduced via the proposed

scheme. In addition, from Table 3, the two algorithms have the largest difference

in the EVD module in terms of time consumption. The main reason is that the

complex calculation of the traditional MUSIC doubles the covariance matrix di-

mension in the EVD, while this issue is avoided by the real-valued preprocessing in

the proposed scheme. When the operating frequency of the chip is 100MHz, it takes

34.60µs for the proposed real-valued MUSIC to finish the spectrum peak search-

ing in one estimation due to the pipeline design. Note that the proposed scheme

exploits more array elements than the conventional MUSIC. The improvement on

time consumption will be further improved if compared with conventional MUSIC

based on 10-element array. However, the hardware resources of FPGA cannot sup-

port the running of the conventional MUSIC based on 10-element array. Therefore,

an 8-element array is considered in conventional MUSIC for comparison.

Table 2 Device utilization summary

Real-valued Polarization MUSIC1 Polarization MUSIC2

Resource Available Utilization Proportion (%) Utilization Proportion (%)
LUT 433200 84658 19.54 268978 62.09

LUTRAM 174200 439 0.25 346 0.2
FF 866400 95185 10.99 214345 24.74

BRAM 1470 7 0.48 6 0.41
DSP 3600 1311 36.42 2979 82.75

1 10 array elements.
2 8 array elements.

Table 3 Timing reports

Real-valued Polarization MUSIC1 Polarization MUSIC2

Module Clock cycle Time(µs) 3 Clock cycle Time(µs) 3

Covariance matrix calculation 105 1.05 105 1.05
EVD 1769 17.69 2939 29.39

Determine Noise Subspace 17 0.17 23 0.23
Spectral Peak Search 3460 34.60 3472 34.72

Total 5396 53.96 6539 65.39
1 10 array elements.
2 8 array elements.
3 Time-consuming when the clock frequency is 100MHz.

4.2 Evaluation of estimation accuracy of proposed real-valued polarization MUSIC

In this part, the estimation accuracy of the proposed real-valued polarization MU-

SIC is compared with the conventional polarization MUSIC under the numerical
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simulation environment. Considering the single source scenario, the DOA parame-

ters of the source are randomly given in the searching range, and the polarization

parameter is fixed as (γ, η) = (45◦, 15◦). Note that 10-element uniform circular ar-

ray is used for both the two algorithms here. In the simulation, the SNR ranges from

0 dB to 28 dB, and 100 signal snapshots are used. The searching step is set as 0.2➦.

The estimation accuracy is evaluated via the root mean square error (RMSE), where

1000 Monte-Carlo experiments are conducted in each SNR. The result is shown in

Figure 14. It is observed that the RMSE of the real-valued polarization MUSIC

algorithm is slightly lower than that of the polarization MUSIC algorithm in low

SNR region. However, as SNR increases, the two methods achieve about the same

estimation accuracy. Based on these simulation results, it can be concluded that

the proposed real-valued polarization MUSIC algorithm has important engineering

application value.
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Figure 14 RMSE vs. SNR curve

5.Conclusion

In this paper, the implementation of polarization MUSIC algorithm on FPGA was

investigated for the first time. To address the resource occupancy and time con-

sumption issue in conventional complex-valued polarization MUSIC, a real-valued

preprocessing was proposed by utilizing the centrosymmetric structure of uniform

circular array, where the received data and steering vector are converted into real

value via a linear transformation. By operating real-valued covariance matrix, the

time consumption in EVD is dramatically reduced. Furthermore, the whole imple-

mentation scheme on FPGA of the proposed real-valued MUSIC was constructed

in this paper. The design of each module was illustrated in detail. To effectively

connect all the modules, a pipeline implementation structure was also designed in

this paper. According to the experimental results, it takes 53.96µs to finish one en-

tire DOA estimation with an operating frequency of 100MHz, while the estimation

accuracy is guaranteed. Compared with the existing relevant methods, the proposed
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implementation scheme has the advantages of high precision, outstanding real-time

performance and low resource consumption, which are of great engineering appli-

cation value.
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