1. Zimmerman, J. B., Anastas, P. T., Erythropel, H. C. & Leitner W. Designing for a green chemistry future. Science 367, 397–400 (2020).
2. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).
3. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).
4. Greaves, G. N. & Sen, S. Inorganic glasses, glass-forming liquids and amorphizing solids. Adv. Phys. 56, 1–166 (2007).
5. Ali, U., Abd Karim, K. J. B. & Buang, N. A. A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym. Rev. 55, 678–705 (2015).
6. Klement, W., Willens, R. H. & Duwez, P. Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869–870 (1960).
7. Bennett, T. D. et al. Hybrid glasses from strong and fragile metal-organic framework liquids. Nat. Commun. 6, 8079 (2015).
8. Axinte, E. glasses as engineering materials: A review. Mater. Design 32, 1717–1732 (2011).
9. Shi, C. J. & Zheng, K. A review on the use of waste glasses in the production of cement and concrete. Resour. Conserv. Recy. 52, 234–247 (2007).
10. Zelzer, M., & Ulijn, R. V. Next-generation peptide nanomaterials: molecular networks, interfaces and supramolecular functionality. Chem. Soc. Rev. 39, 3351–3357 (2010).
11. Zhang, S. G. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21, 1171–1178 (2003).
12. Hendricks, M. P., Sato, K., Palmer, L. C., Stupp, S. I. Supramolecular Assembly of Peptide Amphiphiles. Acc. Chem. Res. 50, 2440–2448 (2017).
13. Yuan, C. Q. et al. Hierarchically oriented organization in supramolecular peptide crystals. Nat. Rev. Chem. 3, 567–588 (2019).
14. Yue, Y. Z., von der Ohe, R. & Jensen, S. L. Fictive temperature, cooling rate, and viscosity of glasses. J. Chem. Phys. 120, 8053–8059 (2004).
15. Angell, C. A., Moynihan, C. T. & Hemmati, M. 'Strong' and 'superstrong' liquids, and an approach to the perfect glass state via phase transition. J. Non Cryst. Solids 274, 319–331 (2000).
16. Weiss, I. M., Muth, C., Drumm, R. & Kirchner, H. O. K. Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine. BMC Biophys. 11, 2 (2018).
17. Adessi, C. & Soto, C. Converting a peptide into a drug: Strategies to improve stability and bioavailability. Curr. Med. Chem. 9, 963–978 (2002).
18. Ediger, M. D., Angell, C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996).
19. Madsen, R. S. K. et al. Ultrahigh-field 67Zn NMR reveals short-range disorder in zeolitic imidazolate framework glasses. Science 367, 1473–1476 (2020).
20. Raja, B., Balachandran, V. & Revathi, B. Structural study, NCA, FT-IR, FT-Raman spectral investigations, NBO analysis, thermodynamic functions of N-acetyl-l-phenylalanine. Spectrochim. Acta A Mol. Biomol. 138, 283–295 (2015).
21. Yuan, C. Q. et al. Nucleation and growth of amino acid and peptide supramolecular polymers through liquid-liquid phase separation. Angew. Chem. Int. Ed. 58, 18116–18123 (2019).
22. Yang, H. F. et al. pH-dependent surface-enhanced Raman scattering studies of N-acetylalanine monolayers self-assembled on a silver surface. J. Raman Spectrosc. 38, 890–895 (2007).
23. Leikin, S., Parsegian, V. A., Yang, W. H. & Walrafen, G. E. Raman spectral evidence for hydration forces between collagen triple helices. Proc. Natl. Acad. Sci. U.S.A. 94, 11312–11317 (1997).
24. Stout, K. L., Hallock, K. J., Kampf, J. W. & Ramamoorthy, A. N-Acetyl-l-phenylalanine. Acta Crystallogr. C56, e100 (2000).
25. Vandenbeukel, A. & Sietsma, J. The glass transition as a free volume related kinetic phenomenon. Acta Metall. 38, 383–389 (1990).
26. Moynihan, C. T., Easteal, A. J., Bolt, M. A. & Tucker, J. Dependence of the fictive temperature of glass on cooling rate. J. Am. Ceram 59, 12–16 (1976).
27. Ito, K., Moynihan, C. T. & Angell, C. A. Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492–495 (1999).
28. Russo, J., Romano, F. & Tanaka, H. glass forming ability in systems with competing orderings. Phys. Rev. X 8, 021040 (2018).
29. Wang, L. M., Angell, C. A. & Richert, R. Fragility and thermodynamics in nonpolymeric glass-forming liquids. J. Chem. Phys. 125, 074505 (2006).
30. Stevenson, J. D. & Wolynes, P. G. Thermodynamic-kinetic correlations in supercooled liquids: a critical survey of experimental data and predictions of the random first-order transition theory of glasses. J. Phys. Chem. B 109, 15093–15097 (2005).
31. Sharma, M., Madras, G. & Bose, S. Unusual fragility and cooperativity in glass-forming and crystalline PVDF/PMMA blends in the presence of multiwall carbon nanotubes. Macromolecules 48, 2740–2750 (2015).
32. Vilgis, T. A. Strong and fragile glasses - a powerful classification and its consequences. Phys. Rev. B 47, 2882–2885 (1993).
33. Ming, W. et al. A comprehensive review of theory and technology of glass molding process. J. Adv. Manuf. Technol. 107, 2671–2706 (2020).
34. Ke, Y. J. et al. Smart windows: electro-, thermo-, mechano-, photochromics, and beyond. Adv. Energy. Mater. 9, 1902066 (2019).
35. Kotz, F. et al. Three-dimensional printing of transparent fused silica glass. Nature 544, 337 (2017).
36. Hargreaves, J. C., Adl, M. S. & Warman, P. R. A review of the use of composted municipal solid waste in agriculture. Agr. Ecosyst. Environ. 123, 1–14 (2008).
37. DelRe, C. et al. Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature 592, 558–563 (2021).
38. Borel, J. F., Feurer, C., Magnee, C. & Stahelin, H. Effects of new anti-lymphocytic peptide cyclosporin-a in animals. Immunology 32, 1017–1025 (1977).