1. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. (3rd ed) CRC Press, Boca Raton. doi.org/10.1201/9781420039900.
2. Newman MC (2014) Fundamentals of ecotoxicology: the science of pollution. (4th ed) CRC Press, Boca Raton, London. doi.org/10.1201/b17658.
3. Hylander LD, Meili M (2003) 500 years of mercury production: global annual inventory by region until 2000 and associated emissions. Sci Total Environ 304:13-27. doi.org/10.1016/S0048-9697(02)00553-3.
4. WHO (2017) Ten chemicals of major health concern. Retrieved from www.who.int/ipcs/assessment/public_health/chemicals_phc/en/index.html.
5. Selin H, Keane SE, Wang S, Selin NE, Davis K, Bally D (2018) Linking science and policy to support the implementation of the Minamata Convention on Mercury. Ambio 47:198-215. doi.org/10.1007/s13280-017-1003-x.
6. Streets DG, Horowitz HM, Lu Z, Levin L, Thackray CP, Sunderland EM (2019) Global and regional trends in mercury emissions and concentrations, 2010-2015. Atmos Environ 201:417-427. doi.org/10.1016/j.atmosenv.2018.12.031.
7. Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE (2018) A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 47:116-140. doi.org/10.1007/s13280-017-1004-9.
8. Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J, et al (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10:5951-5964. doi.org/ 10.5194/acp-10-5951-2010.
9. Pacyna EG, Pacyna JM, Sundsetha K, Munthec J, Kindbomc K, Wilsond S, et al (2010) Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos Environ 44:2487–2499. doi.org/10.1016/j.atmosenv.2009.06.009.
10. Gworek B, Dmuchowski W, Baczewska AH, Brągoszewska P, Bemowska-Kałabun O, Wrzosek-Jakubowska J (2017) Air Contamination by Mercury, Emissions and Transformations - a Review. Water Air Soil Poll 228:123. doi.org/10.1007/s11270-017-3311-y.
11. UNEP Chemical Branch (2008) The global atmospheric mercury assessment: sources, emissions and transport. UNEP-Chemicals, Geneva.
12. Travnikov O, Dastoor A, Bullock R, Christensen JH (2008) Modeling atmospheric transport and deposition. In: AMAP/UNEP, Technical Background Report to the Global Atmospheric Mercury Assessment. Arctic Monitoring and Assessment Programme, UNEP Chemical Branch, pp 79-107.
13. Dastoor AP, Larocque Y (2004) Global circulation of atmospheric mercury: a modelling study. Atmos Environ 38:147-161. doi.org/10.1016/j.atmosenv.2003.08.037.
14. Henze DK, Hakami A, Seinfeld JH (2007) Development of the adjoint of GEOS-Chem. Atmos Chem Phys 79:2413-2433.
15. Seigneur C, Vijayaraghavan K, Lohman K, Levin L (2009) The AER/EPRI global chemical transport model for mercury (CTM-HG). In: Mercury Fate and Transports in the Global Atmosphere, Pirrone N. and Mason R. (eds), Springer, New York, pp 589-602.
16. Travnikov O, Ilyin I (2009) The EMEP/MSC-E mercury modeling system. In: Pirrone, N, Mason R (eds) Mercury Fate and Transports in the Global Atmosphere, Springer, New York, pp 571-587. doi.org/10.1007/978-0-387-93958-2_20.
17. De Simone F, Gencarelli CN, Hedgecock IM, Pirrone N (2014) Global atmospheric cycle of mercury: a model study on the impact of oxidation mechanisms. Environ Sci Pollut R 21:4110-4123. doi.org/10.1007/s11356-013-2451-x.
18. Nriagu JO, Pacyna JM (1998) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139. doi.org/10.1038/333134a0.
19. Seigneur C, Vijayaraghavan K, Lohman K, Karamchandani P, Scott C (2004) Global source attribution for mercury deposition in the United States. Environ Sci Tech 38:555–569. doi.org/10.1021/es034109t.
20. Shetty SK, Lin CJ, Streets DG, Jang C (2008) Model estimate of mercury emission from natural sources in East Asia. Atmos Environ 42:8674–8685. doi.org/10.1016/j.atmosenv.2008.08.026.
21. Liu G, Cai Y, O’Driscoll N, Feng X, Jiang G (2012) Overview of Mercury in the Environment. In: Liu G, Cai Y, O’Driscoll N (eds) Environmental Chemistry and Toxicology of Mercury. J. Wiley & Sons, Hoboken, USA, pp 1-12.
22. Gustin MS, Lindberg SE, Austin K, Coolbaugh M, Vette A, Zhang H (2000) Assessing the contribution of natural sources to regional atmospheric mercury budgets. Sci Total Environ 259:61–71. doi.org/10.1016/S0048-9697(00)00556-8.
23. Gustin MS, Lindberg SE, Weisberg PJ (2008) An update on the natural sources and sinks of atmospheric mercury. Appl Geoch 23:482–493. doi.org/10.1016/j.apgeochem.2007.12.010.
24. Mason RP (2009) Mercury Emissions from Natural Processes and their Importance in the Global Mercury Cycle. In: Pirrone N, Mason R (eds) Mercury Fate and Transports in the Global Atmosphere, Springer, New York, pp 173-191. doi.org/10.1007/978-0-387-93958-2_7.
25. Wang Y, Greger M (2004) Clonal differences in mercury tolerance, accumulation, and distribution in willow. J Environ Qual 33:1779-1785. doi.org/10.2134/jeq2004.1779.
26. Bergan T, Gallardo L, Rohde H (1999) Mercury in the global troposphere - a three-dimensional model study. Atmos Environ 33:1575-1585. doi.org/10.1016/S1352-2310(98)00370-7.
27. Mason RP, Sheu GR (2002) Role of the ocean in the global mercury cycle. Global Biogeoch Cycles 16(4):1093. doi.org/10.1029/2001GB001440.
28. Lamborg CH, Fitzgerald WF, O’Donnell J, Torgersen T (2002) A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochim Cosmochim Ac 66:1105-1118. doi.org/10.1016/S0016-7037(01)00841-9.
29. Selin NE, Jacob DJ, Park RJ, Yantosca RM, Strode S, Jaeglé L, et al (2007) Chemical cycling and deposition of atmospheric mercury: Global constraints from observations. J Geophys Res 112:D02308. doi.org/10.1029/2006JD007450.
30. Nriagu J, Becker C (2003) Volcanic emissions of mercury to the atmosphere: global and regional inventories Sci Total Environ 304:3-12. doi.org/10.1016/S0048-9697(02)00552-1.
31. Pyle DM, Macher RA (2003) The importance of volcanic emissions for the global atmospheric mercury cycle. Atmos Environ 37:5115-5124. doi.org/10.1016/j.atmosenv.2003.07.011.
32. Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J, et al (2009) Global mercury emissions to the atmosphere from natural and anthropogenic sources. In: Pirrone N, Mason R (eds) Mercury fate and transport in the global atmosphere, Springer, Boston, pp 1-47. doi.org/10.1007/978-0-387-93958-2_1.
33. Bagnato E, Aiuppa A, Parello F, Allard P, Shinohara H, Liuzzo M, et al (2011) New clues on the contribution of Earth’s volcanism to the global mercury cycle. Bull Volcanol 73:497-510. doi.1007/s00445-010-0419-y.
34. Bagnato E, Aiuppa A, Parello F, Calabrese S, D’Alessandro W, Mather TA, et al (2007) Degassing of gaseous (elemental and reactive) and particulate mercury from Mount Etna volcano (Southern Italy). Atmos Environ 41:7377-7388. doi.org/10.1016/j.atmosenv.2007.05.060.
35. Witt MLI, Mather TA, Pyle DM, Aiuppa A, Bagnato E, Tsanev VI (2008) Mercury and halogen emissions from Masaya and Telica volcanoes, Nicaragua. J Geophys Res Solid Earth 113(B6). doi.org/10.1029/2007JB005401.
36. Martin RS, Witt MLI, Pyle DM, Mather TA, Watt SFL, Bagnato E, et al (2011) Rapid oxidation of mercury (Hg) at volcanic vents: Insights from high temperature thermodynamic models of Mt Etna's emissions. Chem Geol 283:279-286. doi.org/10.1016/j.chemgeo.2011.01.027.
37. Ermolin MS, Fedotov PS, Malik NA, Karandashev VK (2018) Nanoparticles of volcanic ash as a carrier for toxic elements on the global scale. Chemosphere 200:16-22. doi.org/10.1016/j.chemosphere.2018.02.089.
38. Coolbaugh M, Gustin M, Rytuba J (2002) Annual emissions of mercury to the atmosphere from natural sources in Nevada and California. Environ Geol 42:338-349. doi 10.1007/s00254-002-0557-4.
39. Cinnirella S, Pirrone N (2006) Spatial and temporal distributions of mercury emissions from forest fires in Mediterranean region and Russian federation. Atmos Environ 40:7346-7361. doi.org/10.1016/j.atmosenv.2006.06.051.
40. Friedli HR, Arellano AF, Cinnirella S, Pirrone N (2009) Mercury emissions from global biomass burning: spatialand temporal distribution. In: Mason R, Pirrone N (eds) Mercury Fate and Transport in the Global Atmosphere. Springer, Boston, pp 193-220. doi.org/10.1007/978-0-387-93958-2_8.
41. Obrist D, Johnson DW, Lindberg SE (2009) Mercury concentrations and pools in four Sierra Nevada forest sites, and relationships to organic carbon and nitrogen. Biogeosciences 6:765-777. doi.org/10.1016/j.atmosenv.2004.09.081.
42. Woodruff LG, Cannon WF (2010) Immediate and long-term fire effects on total mercury in forests soils of northeastern Minnesota. Environ Sci Technol 44:5371-5376. doi.org/10.1021/es100544d.
43. Gustin MS (2012) Exchange of mercury between the atmosphere and terrestrial ecosystems. In: Liu G, Cai Y, O'Driscoll N (eds) Environmental chemistry and toxicology of mercury. John Wiley & Sons, pp 423-451.
44. Skov H, Bullock R, Christensen JH, Sørensen LL (2008) Atmospheric pathways. In: AMAP/UNEP, Technical Background Report to the Global Atmospheric Mercury Assessment. Arctic Monitoring and Assessment Programme, UNEP Chemical Branch, pp 64-72.
45. Mason RP, Pirrone N, Hedgecock I, Suzuki N, Levin L (2010) Conceptual overview. In: Pirrone N, Keating T (eds) Hemispheric transport of air pollution - part B, United Nations Publication, New York, Geneva, pp 1-19. doi.org/10.18356/38ccc958-en.
46. Lindberg SE, Dong W, Meyers T (2002) Transpiration of gaseous elemental mercury through vegetation in a subtropical wetland in Florida. Atmos Environ 36:5207-5219. doi.org/10.1016/S1352-2310(02)00586-1.
47. Marsik FJ, Keeler GJ, Landis MS (2007) The dry-deposition of speciated mercury to the Florida Everglades: Measurements and modeling. Atmos Environ 41:136-149. doi.org/10.1016/j.atmosenv.2006.07.032.
48. Hanson PJ, Lindberg SE, Tabberer TA, Owens JA, Kim KH (1995) Foliar exchange of mercury vapor: evidence for a compensation point. Water Air Soil Poll 80:373-382. doi.org/10.1007/BF01189687.
49. Caffrey PF, Ondov JM, Zufall MJ, Davidson CI (1998) Determination of size-dependent dry particle deposition velocities with multiple intrinsic elemental tracers. Environ Sci Technol 32:1615-1622. doi.org/10.1021/es970644f.
50. Converse AD, Riscassi AL, Scanlon TM (2010) Seasonal variability in gaseous mercury fluxes measured in a high-elevation meadow. Atmos Environ 44:2176-2185. doi.org/10.1016/j.atmosenv.2010.03.024.
51. Smith-Downey NV, Sunderland EM, Jacob DJ (2010) Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model. J Geophys Res Biogeosci 115(G3). doi.org/10.1029/2009JG001124.
52. Carpi A, Lindberg SE (1997) Sunlight-Mediated Emission of Elemental Mercury from Soil Amended with Municipal Sewage Sludge. Environ Sci Technol 31:2085-2091. doi.org/10.1021/Es960910+.
53. Zhang H, Lindberg SE, Marsik FJ, Keeler GJ (2001) Mercury air/surface exchange kinetics of background soils of the Tahquamenon River watershed in the Michigan Upper Peninsula. Water Air Soil Poll 126:151-169.
54. Ferrari CP, Dommerguea A, Veysseyrea A, Planchona F, Boutrona CF (2002) Mercury speciation in the French seasonal snow cover. Sci Total Environ 287:61-69. doi.org/10.1016/S0048-9697(01)00999-8.
55. Gustin MS, Biester H, Kim CS (2002) Investigation of the light-enhanced emission of mercury from naturally enriched substrates. Atmos Environ 36:3241-3254. doi.org/10.1016/S1352-2310(02)00329-1.
56. Poissant L, Pilote M, Xu X, Zhang H, Beauvais C (2004) Atmospheric mercury speciation and deposition in the Bay St. Francois wetlands. J Geophys Res 109:1-14. doi.org/10.1029/2003JD004364.
57. Ericksen JA, Gustin MS, Xin M, Weisberg PJ, Fernandez GCJ (2006) Air-soil exchange of mercury from background soils in the United States. Sci Total Environ 366:851-863. doi.org/10.1016/j.scitotenv.2005.08.019.
58. Gustin MS (2003) Are mercury emissions from geologic sources significant? A status report. Sci Total Environ 304:153-167. doi.org/10.1016/S0048-9697(02)00565-X.
59. Gustin MS, Lindberg SE (2005) Terrestial Hg Fluxes: Is the Next Exchange Up, Down, or Neither? In: Pirrone N, Mahaffey KR (eds) Dynamics of Mercury Pollution on Regional and Global Scales, Springer, Boston, pp 241-259. doi.org/10.1007/0-387-24494-8_11.
60. Stamenkovic J, Gustin MS (2007) Evaluation of use of EcoCELL technology for quantifying total gaseous mercury fluxes over background substrates. Atmos Environ 41:3702-3712. doi.org/10.1016/j.atmosenv.2006.12.037.
61. Lindberg SE, Hanson PJ, Meyers TA, Kim KH (1998) Air/surface exchange of mercury vapor over forests—the need for a reassessment of continental biogenic emissions. Atmos Environ 32:895-908. doi.org/10.1016/S1352-2310(02)00586-1.
62. Bash JO, Miller DR, Meyer TH, Bresnahan PA (2004) Northeast United States and Southeast Canada natural mercury emissions estimated with a surface emission model. Atmos Environ 38:5683-5692. doi.org/10.1016/j.atmosenv.2004.05.058.
63. St. Louis VL, Rudd JW, Kelly CA, Hall BD, Rolfhus KR, Scott KJ, et al (2001) Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems. Environ Sci Technol 35:3089-3098. doi.org/10.1021/es001924p.
64. Magarelli G, Fostier AH (2005) Influence of deforestation on the mercury air/soil exchange in the Negro River Basin, Amazon. Atmos Environ 39:7518-7528. doi.org/10.1016/j.atmosenv.2005.07.067.
65. Obrist D, Gustin MS, Arnone III JA, Johnson DW, Schorran DE, Verburg PS (2005) Measurements of gaseous elemental mercury fluxes over intact tallgrass prairie monoliths during one full year. Atmos Environ 39:957-965. doi.org/10.1016/j.atmosenv.2004.09.081.
66. Gustin MS, Engle M, Ericksen J, Lyman S, Stamenkovic J, Xin M (2006) Mercury exchange between the atmosphere and low mercury containing substrates. Appl Geoch 21:1913-1923. doi.org/10.1016/j.apgeochem.2006.08.007.
67. Selin NE, Jacob DJ, Yantosca RM, Strode S, Jaeglé L, Sunderland EM (2008) Global 3D land, ocean, atmosphere model for mercury: Present day versus preindustrial cycles and anthropogenic enrichment factors for deposition. Global Biogeochem Cycles 22:1-13. doi.org/10.1029/2007GB003040.
68. Osterwalder S, Huang JH, Shetaya WH, Agnan Y, Frossard A, Frey B, et al (2019) Mercury emission from industrially contaminated soils in relation to chemical, microbial, and meteorological factors. Environ Pollut 250:944-952. doi.org/10.1016/j.envpol.2019.03.093.
69. Gabriel MC, Williamson DG, Brooks S, Zhang H, Lindberg S (2005) Spatial variability of mercury emissions from soils in a southeastern US urban environment. Environ Geol 48:955-964. doi.org/10.1007/s00254-005-0043-x.
70. Ma M, Wang D, Sun R, Shen Y, Huang L (2013) Gaseous mercury emissions from subtropical forested and open field soils in a national nature reserve, southwest China. Atmos Environ 64:116-123. doi.org/10.1016/j.atmosenv.2012.09.038.
71. Qiu G, Feng X, Wang S, Shang L (2006) Environmental contamination of mercury from Hg-mining areas in Wuchuan, northeastern Guizhou, China. Environ Pollut 142:549-558. doi.org/10.1016/j.envpol.2005.10.015.
72. Goulet RR, Holmes J, Tessier A, Wang F, Siciliano SD, Page B, et al (2007) Mercury methylation in sediments of a riverine marsh: the role of redox conditions sulfur chemistry and microbial communities. Geochim Cosmochim Ac 71:3396-3406.
73. Windham-Myers L, Marvin-DiPasquale M, Kakouros E, Agee JL, Kieu LH, Stricker CA, et al (2014) Mercury cycling in agricultural and managed wetlands of California, USA: Seasonal influences of vegetation on mercury methylation, storage, and transport. Sci Total Environ 484:308-318. doi.org/10.1016/j.scitotenv.2013.05.027.
74. Kronberg RM, Jiskra M, Wiederhold JG, Bjorn E, Skyllberg U (2016) Methyl mercury formation in hillslope soils of boreal forests: The role of forest harvest and anaerobic microbes. Environ. Sci Technol 50:9177-9186. doi.org/10.1021/acs.est.6b00762.
75. Gnamuš A, Byrne AR, Horvat M (2000) Mercury in the soil-plant-deer-predator food chain of a temperate forest in Slovenia. Environ Sci Technol 34:3337-3345. doi.org/10.1021/es991419w.
76. Meng B, Feng X, Qiu G, Cai Y, Wang D, Li P, et al. (2010) Distribution patterns of inorganic mercury and methylmercury in tissues of rice (Oryza sativa L.) plants and possible bioaccumulation pathways. J Agr Food Chem 58:4951-4958. doi.org/10.1021/jf904557x.
77. Gilli R, Karlen C, Weber M, Rüegg J, Barmettler K, Biester H, et al (2018) Speciation and mobility of mercury in soils contaminated by legacy emissions from a chemical factory in the Rhône valley in canton of Valais, Switzerland. Soil Systems 2:44. doi.org/10.3390/soilsystems2030044.
78. Qiu G, Feng X, Wang S, Shang L (2005) Mercury and methylmercury in riparian soil, sediments, mine-waste calcines, and moss from abandoned Hg mines in east Guizhou province, southwestern China. Appl Geoch 20:627-638. doi.org/10.1016/j.apgeochem.2004.09.006.
79. Xu X, Meng B, Zhang C, Feng X, Gu C, Guo J, et al (2017) The local impact of a coal-fired power plant on inorganic mercury and methyl-mercury distribution in rice (Oryza sativa L.). Environ Pollut 223:11-18. doi.org/10.1016/j.envpol.2016.11.042.
80. Mailman M, Bodaly RA (2005) Total mercury, methyl mercury, and carbon in fresh and burned plants and soil in Northwestern Ontario. Environ Pollut 138:161-166. doi.org/10.1016/j.envpol.2005.02.005.
81. Hararuk O, Obrist D, Luo Y (2013) Modelling the sensitivity of soil mercury storage to climate-induced changes in soil carbon pools. Biogeosciences 10:2393-2407. doi.org/10.5194/bg-10-2393-2013.
82. Amos HM, Sonke JE, Obrist D, Robins N, Hagan N, Horowitz HM, et al (2015) Observational and modeling constraints on global anthropogenic enrichment of mercury. Environ Sci Technol 49:4036-4047. https://doi.org/10.1021/es5058665.
83. Wang J, Feng X, Anderson CW, Xing Y, Shang L (2012) Remediation of mercury contaminated sites–a review. J Hazard Mater 221:1-18. doi.org/10.1016/j.jhazmat.2012.04.035.
84. Li S, Jia Z (2018) Heavy metals in soils from a representative rapidly developing megacity (SW China): Levels, source identification and apportionment. Catena 163:414-423. doi.org/10.1016/j.catena.2017.12.035.
85. Obrist D, Pearson C, Webster J, Kane T, Lin CJ, Aiken GR, et al (2016) A synthesis of terrestrial mercury in the western United States: Spatial distribution defined by land cover and plant productivity. Sci Total Environ 568:522-535. doi.org/10.1016/j.scitotenv.2015.11.104.
86. Tóth G, Hermann T, Szatmári G, Pásztor L (2016) Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Sci Total Environ 565:1054-1062. doi.org/10.1016/j.scitotenv.2016.05.115.
87. Bailey EA, Gray JE, Theodorakos PM (2002) Mercury in vegetation and soils at abandoned mercury mines in southwestern Alaska. USA. Geochem Explor Env A 2:275-285. doi.org/10.1144/1467-787302-032.
88. Gray JE, Theodorakos PM, Fey DL, Krabbenhoft DP (2015) Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA. Environ Geochem Hlth 37:35-48. doi.org/10.1007/s10653-014-9628-1.
89. Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1-8. doi.org/10.1016/j.jhazmat.2009.09.113.
90. Gosar M, Šajn R, Biester H (2006) Binding of mercury in soils and attic dust in the Idrija mercury mine area (Slovenia). Sci Total Environ 369:150-162. doi.org/10.1016/j.scitotenv.2006.05.006.
91. Teršič T, Gosar M, Šajn R (2009) Impact of mining activities on soils and sediments at the historical mining area in Podljubelj, NW Slovenia. J Geochem Explor 100:1-10. doi.org/10.1016/j.gexplo.2008.02.005.
92. Banásová V (1999) Vegetation on contaminated sites near an Hg mine and smelter. In: Ebinghaus R, Turner RR, de Lacedra LD, Vasiljev O, Salomons W (eds) Mercury Contaminated Sites. Springer, Berlin, Heidelberg, pp 321-335. doi.org/10.1007/978-3-662-03754-6.
93. Dago A, González I, Ariño C, Martínez-Coronado A, Higueras P, Díaz-Cruz JM, et al (2014) Evaluation of mercury stress in plants from the Almadén mining district by analysis of phytochelatins and their Hg complexes. Environ Sci Technol 8:6256-6263. doi.org/10.1021/es405619y.
94. Boente C, Albuquerque MTD, Gerassis S, Rodríguez-Valdés E, Gallego JR (2019) A coupled multivariate statistics, geostatistical and machine-learning approach to address soil pollution in a prototypical Hg-mining site in a natural reserve. Chemosphere 218:767-777. doi.org/10.1016/j.chemosphere.2018.11.172.
95. Wahsha M, Maleci L, Bini C (2019) The impact of former mining activity on soils and plants in the vicinity of an old mercury mine (Vallalta, Belluno, NE Italy). Geochem-Explor Envir Anal 19:171-175. doi.org/10.1144/geochem2018-040.
96. Gemici Ü, Tarcan G, Somay AM, Akar T (2009) Factors controlling the element distribution in farming soils and water around the abandoned Halıköy mercury mine (Beydağ, Turkey). Appl Geoch 24:1908-1917. doi.org/10.1016/j.apgeochem.2009.07.004.
97. Xiao R, Wang S, Li R, Wang JJ, Zhang Z (2017) Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotox Environ Safe 141:17-24. doi.org/10.1016/j.ecoenv.2017.03.002.
98. Yin R, Gu C, Feng X, Hurley JP, Krabbenhoft DP, Lepak RF, et al (2016) Distribution and geochemical speciation of soil mercury in Wanshan Hg mine: Effects of cultivation. Geoderma 272:32-38. doi.org/10.1016/j.jes.2018.04.028.
99. Chiarantini L, Rimondi V, Benvenuti M, Beutel MW, Costagliola P, Gonnelli C, et al (2016) Black pine (Pinus nigra) barks as biomonitors of airborne mercury pollution. Sci Total Environ 569:105-113. doi.org/10.1016/j.scitotenv.2016.06.029.
100. Hissler C, Probst JL (2006) Impact of mercury atmospheric deposition on soils and streams in a mountainous catchment (Vosges, France) polluted by chlor-alkali industrial activity: the important trapping role of the organic matter. Sci Total Environ 361:163-178. doi.org/10.1016/j.scitotenv.2005.05.023.
101. Grangeon S, Guédron S, Asta J, Sarret G, Charlet L (2012) Lichen and soil as indicators of an atmospheric mercury contamination in the vicinity of a chlor-alkali plant (Grenoble, France). Ecol Indic 13:178-183. doi.org/10.1016/j.ecolind.2011.05.024.
102. Esbrí JM, López-Berdonces MA, Fernández-Calderón S, Higueras P, Díez S (2015) Atmospheric mercury pollution around a chlor-alkali plant in Flix (NE Spain): an integrated analysis. Environ Sci Pollut R 22:4842-4850. doi.org/10.1007/s11356-014-3305-x.
103. Biester H, Müller G, Schöler HF (2002) Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Sci Total Environ 284:191-203. doi.org/10.1016/S0048-9697(01)00885-3.
104. Bernaus A, Gaona X, van Ree D, Valiente M (2006) Determination of mercury in polluted soils surrounding a chlor-alkali plant: direct speciation by X-ray absorption spectroscopy techniques and preliminary geochemical characterisation of the area. Anal Chim Acta 565:73-80. doi.org/10.1016/j.aca.2006.02.020.
105. Reis AT, Rodrigues SM, Araújo C, Coelho JP, Pereira E, Duarte AC (2009) Mercury contamination in the vicinity of a chlor-alkali plant and potential risks to local population. Sci Total Environ 407:2689-2700. doi.org/10.1016/j.scitotenv.2008.10.065.
106. Zheng N, Liu J, Wang Q, Liang Z (2011) Mercury contamination due to zinc smelting and chlor-alkali production in NE China. Appl Geoch 26(2):188-193. doi.org/10.1016/j.apgeochem.2010.11.018.
107. Song Z, Li P, Ding L, Li Z, Zhu W, He T, et al (2018) Environmental mercury pollution by an abandoned chlor-alkali plant in Southwest China. J Geochem Explor 194:81-87. doi.org/10.1016/j.gexplo.2018.07.017.
108. Zhu W, Li Z, Li P, Yu B, Lin CJ, SommarJ, et al (2018) Re-emission of legacy mercury from soil adjacent to closed point sources of Hg emission. Environ Pollut 242:718-727. doi.org/10.1016/j.envpol.2018.07.002.
109. Reis AT, Rodrigues SM, Davidson CM, Pereira E, Duarte AC (2010) Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas. Chemosphere 81:1369-1377. doi.org/10.1016/j.chemosphere.2010.09.030.
110. Liang J, Feng C, Zeng G, Gao X, Zhong M, Li X, et al (2017) Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environ Pollut 225:681-690. doi.org/10.1016/j.envpol.2017.03.057.
111. Wu Q, Wang S, Wang L, Liu F, Lin CJ, Zhang L, et al (2014) Spatial distribution and accumulation of Hg in soil surrounding a Zn/Pb smelter. Sci Total Environ 496:668-677. doi.org/10.1016/j.scitotenv.2014.02.067.
112. Wang D, Shi X, Wei S (2003) Accumulation and transformation of atmospheric mercury in soil. Sci Total Environ 304:209-214. doi.org/10.1016/S0048-9697(02)00569-7.
113. Boszke L, Kowalski A, Siepak J (2004) Grain size partitioning of mercury in sediments of the middle Odra River (Germany/Poland). Water Air Soil Poll 159:125-138. doi.org/10.1023/B:WATE.0000049171.22781.bd.
114. Bonanno G, Giudice RL, Pavone P (2012) Trace element biomonitoring using mosses in urban areas affected by mud volcanoes around Mt. Etna. The case of the Salinelle, Italy. Environ Monit Assess 184:5181-5188. doi.10.1007/s10661-011-2332-z.
115. Cheng H, Li M, Zhao C, Li K, Peng M, Qin A, et al (2014) Overview of trace metals in the urban soil of 31 metropolises in China. J Geochem Explor 139:31-52. doi.org/10.1016/j.gexplo.2013.08.012.
116. Tijhuis L, Brattli B, Sæther OM (2002) A geochemical survey of topsoil in the city of Oslo, Norway. Environ. Geochem Hlth 24:67-94. doi.org/10.1023/A:1013979700212.
117. Manta DS, Angelone M, Bellanca A, Neri R, Sprovieri M (2002) Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Sci Total Environ 300:229-243. doi.org/10.1016/S0048-9697(02)00273-5.
118. Rodrigues S, Pereira ME, Duarte AC, Ajmone-Marsan F, Davidson C.M, Grčman H, et al (2006( Mercury in urban soils: a comparison of local spatial variability in six European cities. Sci. Total Environ 368:926-936. doi.org/10.1016/j.scitotenv.2006.04.008.
119. Cheng H, Zhao C, Liu F, Yang K, Liu Y, Li M, et al (2013) Mercury drop trend in urban soils in Beijing, China, since 1987. J Geochem Explor 124:195-202. doi.org/10.1016/j.gexplo.2012.09.007.
120. Ottesen RT, Birke M, Finne TE, Gosar M, Locutura J, Reiman C, et al (2013) Mercury in European agricultural and grazing land soils. Appl Geoch 33:1-12. doi.org/10.1016/j.apgeochem.2012.12.013.
121. Loska K, Wiechuła D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30:159-165. doi.org/10.1016/S0160-4120(03)00157-0.
122. Ahmadi M, Akhbarizadeh R, Haghighifard NJ, Barzegar G, Jorfi S (2019) Geochemical determination and pollution assessment of heavy metals in agricultural soils of south western of Iran. J Environ Health Sci Eng 17:657–669. doi.org/10.1007/s40201-019-00379-6.
123. Navrátil T, Shanley J, Rohovec J, Hojdová M, Penížek V, Buchtová J (2014) Distribution and pools of mercury in Czech forest soils. Water Air Soil Poll 225:1829. doi.org/10.1007/s11270-013-1829-1.
124. Åkerblom S, Meili M, Bringmark L, Johansson K, Kleja DB, Bergkvist B (2008) Partitioning of Hg between solid and dissolved organic matter in the humus layer of boreal forests. Water Air Soil Poll 189:239-252. doi.10.1007/s11270-007-9571-1.
125. Fiorentino JC, Enzweiler J, Angélica RS (2011) Geochemistry of mercury along a soil profile compared to other elements and to the parental rock: evidence of external input. Water Air Soil Poll 221:63-75. doi.org/10.1007/s11270-011-0769-x.
126. do Valle CM, Santana GP, Augusti R, Egreja Filho FB, Windmöller CC (2005) Speciation and quantification of mercury in Oxisol, Ultisol, and Spodosol from Amazon (Manaus, Brazil). Chemosphere 58:779-792. doi.org/10.1016/j.chemosphere.2004.09.005.
127. Armesto AG, Bibián-Núñez L, Campillo-Cora C, Pontevedra-Pombal X, Arias-Estévez M, Nóvoa-Muñoz JC (2018) Total mercury distribution among soil aggregate size fractions in a temperate forest podzol. Span J Soil Sci 8:190-202. doi.org/10.3232/SJSS.2018.V8.N1.05.
128. Yin D, He T, Yin R, Zeng L (2018) Effects of soil properties on production and bioaccumulation of methylmercury in rice paddies at a mercury mining area. China J Environ Sci 68:194-205. doi.org/10.1016/j.jes.2018.04.028.
129. Wang DY, Qing CL, Guo TY, Guo YJ (1997) Effects of humic acid on transport and transformation of mercury in soil-plant systems. Water Air Soil Poll 95:35-43. doi.org/10.1007/BF02406154.
130. Soares LC, Egreja Filho FB, Linhares L.A, Windmoller CC, Yoshida MI (2015) Accumulation and oxidation of elemental mercury in tropical soils. Chemosphere 134:181-191. doi.org/10.1016/j.chemosphere.2015.04.020.
131. Smith T, Pitts K, McGarvey JA, Summers AO (1998) Bacterial oxidation of mercury metal vapor, Hg(0). Appl Environ Microbiol 64:1328-1332.
132. Colombo MJ, Ha J, Reinfelder JR, Barkay T, Yee N (2013) Anaerobic oxidation of Hg (0) and methylmercury formation by Desulfovibrio desulfuricans ND132. Geochim Cosmochim Ac 112:166-177. doi.org/10.1016/j.gca.2013.03.001.
133. Colombo MJ, Ha J, Reinfelder JR, Barkay T, Yee N (2014) Oxidation of Hg(0) to Hg(II) by diverse anaerobic bacteria. Chem Geol 363:334-340. doi.org/10.1016/j.chemgeo.2013.11.020.
134. Lima FRD, Martins GC, Silva AO, Vasques ICF, Engelhardt MM, Cândido GS, et al (2019) Critical mercury concentration in tropical soils: Impact on plants and soil biological attributes. Sci Total Environ 666:472-479. doi.org/10.1016/j.scitotenv.2019.02.216.
135. Gustin MS, Ericksen JA, Schorran DE, Johnson DW, Lindberg SE, Coleman JS (2004) Application of controlled mesocosms for understanding mercury air- soil - plant exchange. Environ Sci Technol 38:6044-6050. doi.org/10.1021/es0487933.
136. Fantozzi L, Ferrara R, Dini F, Tamburello L, Pirrone N, Sprovieri F (2013) Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy. Environ Res 125:69-74. doi.org/10.1016/j.envres.2013.02.004.
137. Mazur M, Mitchell CPJ, Eckley CS, Eggert SL, Kolka RK, Sebestyen SD, et al (2014) Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment. Sci Total Environ 496:678-687. doi.org/10.1016/j.scitotenv.2014.06.058.
138. Ericksen JA, Gustin MS, Schorran DE, Johnson DW, Lindberg SE, Coleman JS (2003) Accumulation of atmospheric mercury in forest foliage. Atmos Environ 37:1613-1622. doi.org/10.1016/S1352-2310(03)00008-6.
139. Leonard TL, Taylor Jr GE, Gustin MS, Fernandez GC (1998) Mercury and plants in contaminated soils: 1. Uptake, partitioning, and emission to the atmosphere. Environ Toxicol Chem 17:2063-2071. doi.org/10.1002/etc.5620171024.
140. Frescholtz TF, Gustin MS, Schorran DE, Fernandez GC (2003) Assessing the source of mercury in foliar tissue of quaking aspen. Environ Toxicol Chem 22:2114-2119. doi.org/10.1002/etc.5620220922.
141. Assad M, Parelle J, Cazaux D, Gimbert F, Chalot M, Tatin-Froux F (2016) Mercury uptake into poplar leaves. Chemosphere 146:1-7. doi.org/10.1016/j.chemosphere.2015.11.103.
142. Fleck JA, Grigal DF, Nater EA (1999) Mercury uptake by trees: An observational experiment. Water Air Soil Poll 115:513-523. doi.org/10.1023/A:1005194608598.
143. Laacouri A, Nater EA, Kolka RK (2013) Distribution and uptake dynamics of mercury in leaves of common deciduous tree species in Minnesota, USA. Environ Sci Technol 4:10462-10470. doi.org/10.1021/es401357z.
144. Arnold J, Gustin MS, Weisberg PJ (2018) Evidence for nonstomatal uptake of Hg by aspen and translocation of Hg from foliage to tree rings in Austrian pine. Environ Sci Technol 52:1174-1182. doi.org/10.1021/acs.est.7b04468.
145. Moreno-Jiménez E, Gamarra R, Carpena-Ruiz RO, Millán R, Peñalosa JM, Esteban E (2006) Mercury bioaccumulation and phytotoxicity in two wild plant species of Almadén area. Chemosphere 63:1969-1973. doi.org/10.1016/j.chemosphere.2005.09.043.
146. Qian X, Wu Y, Zhou H, Xu X, Xu., Shang L, et al (2018) Total mercury and methylmercury accumulation in wild plants grown at wastelands composed of mine tailings: Insights into potential candidates for phytoremediation. Environ Pollut 239:757-767. doi.org/10.1016/j.envpol.2018.04.105.
147. De Temmerman L, Waegeneers N, Claeys N, Roekens E (2009)Comparison of concentrations of mercury in ambient air to its accumulation by leafy vegetables: An important step in terrestrial food chain analysis. Environ Poll 157:1337-1341. doi.org/10.1016/j.envpol.2008.11.035.
148. Egler SG, Rodrigues-Filho S, Villas-Bôas RC, Beinhoff C (2006) Evaluation of mercury pollution in cultivated and wild plants from two small communities of the Tapajós gold mining reserve, Pará State, Brazil. Sci Total Environ 368(1):424-433.
149. Svoboda L, Havlíčková B, Kalač P (2006) Contents of cadmium, mercury and lead in edible mushrooms growing in a historical silver-mining area. Food Chem 96:580-585. doi.org/10.1016/j.foodchem.2005.03.012.
150. Falandysz J, Mędyk M, Treu R (2018) Bio-concentration potential and associations of heavy metals in Amanita muscaria (L.) Lam. from northern regions of Poland. Environ Sci Pollut R 25:25190–25206. doi.org/10.1007/s11356-018-2603-0.
151. Millhollen AG, Gustin MS, Obrist D (2006) Foliar mercury accumulation and exchange for three tree species. Environ Sci Technol 40:6001-6006. doi.org/10.1021/es0609194.
152. Asati A, Pichhode M, Nikhil K (2016) Effect of heavy metals on plants: an overview. Int J Appl Innov Eng Mgmt 5:56-66.
153. Zhou ZS, Wang SJ, Yang ZM (2008) Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere 70:1500-1509. doi.org/10.1016/j.chemosphere.2007.08.028.
154. Azevedo R, Rodriguez E (2012) Phytotoxicity of mercury in plants: a review. J Bot ID 848614. dx.doi.org/10.1155/2012/848614.
155. Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66:379-422. doi.org/10.1007/BF02868923.
156. Moreno FN, Anderson CW, Stewart RB, Robinson BH (2004) Phytoremediation of mercury-contaminated mine tailings by induced plant-mercury accumulation. Environ Pra 6:165-175. doi.org/10.1017/S1466046604000274.
157. Obrist D (2007) Atmospheric mercury pollution due to losses of terrestrial carbon pools? Biogeochemistry 85:119-123. doi.org/10.1007/s10533-007-9108-0.
158. Selin NE (2009) Global biogeochemical cycling of mercury: a review. Ann Rev Environ Res 34:43-63. doi.org/10.1146/annurev.environ.051308.084314.
159. Lomonte C, Doronila AI, Gregory D, Baker AJ, Kolev SD (2010) Phytotoxicity of biosolids and screening of selected plant species with potential for mercury phytoextraction. J Hazard Mater 173:494-501. doi.org/10.1016/j.jhazmat.2009.08.112.
160. Fasani E, Manara A, Martini F, Furini A, DalCorso G (2018) The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant Cell Environ 41:1201-1232. doi.org/10.1111/pce.12963.
161. Ahmed I, Sebastain A, Prasad MNV, Kirti PB (2029) Emerging Trends in Transgenic Technology for Phytoremediation of Toxic Metals and Metalloids. In: Prasad MNV (ed) Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids. Academic Press, pp 43-62. doi.org.1016/C2017-0-01241-7.
162. Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156, 1-9. doi.org/10.1016/S0168-9452(00)00227-2.
163. Israr M, Sahi SV (2006) Antioxidative responses to mercury in the cell cultures of Sesbania drummondii. Plant Physiol Bioch 44:590-595. doi.org/10.1016/j.plaphy.2006.09.021.
164. Cargnelutti D, Tabaldi LA, Spanevello RM, de Oliveira Jucoski G, Battisti V, Redin M, et al (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65:999-1006. doi.org/10.1016/j.chemosphere.2006.03.037.
165. Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52:199-223. doi.org/10.1016/j.envexpbot.2004.02.009.
166. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199-216. doi.org/10.1007/s10311-010-0297-8.
167. Marrugo-Negrete J, Durango-Hernández J, Pinedo-Hernández J, Enamorado-Montes G, Díez S (2016) Mercury uptake and effects on growth in Jatropha curcas. J Environ Sci 48:120-125. doi.org/10.1016/j.jes.2015.10.036.
168. Teixeira DC, Lacerda LD, Silva-Filho EV (2018) Foliar mercury content from tropical trees and its correlation with physiological parameters in situ. Environ Pollut 242:1050-1057. doi.org/10.1016/j.envpol.2018.07.120.
169. Zhou ZS, Huang S, Guo K, Mehta SK, Zhang PC, Zhi MY, et al (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1-9. doi.org/10.1016/j.jinorgbio.2006.05.011.
170. Manikandan R, Sahi SV, Venkatachalam P (2015) Impact assessment of mercury accumulation and biochemical and molecular response of Mentha arvensis: a potential hyperaccumulator plant. Sci World J ID 715217. doi.org/10.1155/2015/715217.
171. Mahbub KR, Krishnan K, Naidu R, Andrews S, Megharaj M (2017) Mercury toxicity to terrestrial biota. Ecol Indic 74:451-462. doi.org/10.1016/j.atmosenv.2005.07.067.