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Abstract
The objective of this work was to estimate the best approach for prediction and establish a network with better
predictive power in white oat using methodologies based on regression, artificial intelligence, and machine learning.
Seventy-eight white oat genotypes were evaluated in 2008 and 2009. Were evaluated without and with fungicide,
established prediction models in four experimental sets. The characteristics evaluated were grain yield, which was
used as a response variable, and ten others as explanatory variables. Assessing the importance of variables
through the impact of destructuring or disturbing the information of a given input on the estimation of R2. This
importance was estimated by exchanging information or making the phenotypic value of each characteristic
constant and checking for changes in the estimates of R2. When the values of a feature are disturbed, the value of
R2 decreases, indicating that the feature is important over the others for prediction purposes. The importance of
variables using the radial basis function network was estimated according to the MLP. For machine learning,
decision trees, bagging, random forest, and boosting were used. The quality of the predictive model was adjusted
based on R2 was used to quantify the importance of the phenotypic trait. The characters indicated to assist in
decision-making are plant height, leaf rust severity, and lodging percentage. The R2 ranged from 30.14% − 96.45%
and 10.57% − 94.61%, for computational intelligence and machine learning, respectively. The bagging technique
showed a high estimate of the coefficient of determination more elevated than the others.

1. Introduction
White oats (Avena sativa L.) are of great agricultural importance worldwide. Brazil is the fifth-largest producer
globally and has shown a substantial increase in the area cultivated with white oats in the last ten years [1]. This
crop can be used to produce grain, forage, and straw in a no-tillage system [2].

Estimating the importance of predictor variables in breeding programs allows for faster progress, selecting, and
predicting traits with low heritability and/or measurement difficulty [3, 4]. Although simultaneous assessment of
characteristics provides a wide variety of information, identifying which predictor variable is more critical is
challenging for the breeder [5]. The estimation of the importance of variables can be performed by artificial neural
networks (ANNs) through algorithms such as Goh (1995)[6], who proposed a modification in the Garson (1991)
algorithm[7], which consists of partitioning the neural network connection weights to determine the relative
importance of each input variable in the network.

Regression, artificial intelligence, and machine learning-based methodologies have been successfully used in
prediction studies. [5] evaluated the high-dimensional phenotypic traits in soybean through the machine learning
approach to predict seed yield for the prescriptive development of cultivars for agricultural practices. [8] applied
such methodologies to predict the insect pest population using host plant climatic and phenological factors. [4]
used these methodologies to predict grain yield, grain length-width ratio, and panicle length in flood-irrigated rice. [3]
evaluated the importance of auxiliary traits of the main trait based on phenotypic information and previously known
genetic structure using computational intelligence and machine learning to develop good predictive tools in
breeding programs. However, there are no studies in the literature related to yield prediction and verification of the
importance of variables for grain yield in white oat culture.

Given the above, this work aims to: (1) predict grain yield in white oat using methodologies based on regression,
artificial intelligence, and machine learning; (2) identify more relevant predictors, considering different prediction
approaches in white oat.
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2. Material And Methods

2.1. Experimental data
The field experiment was carried out in the experimental area of the Instituto Regional de Desenvolvimento Rural
(IRDeR) of the Universidade Regional do Noroeste do Estado do Rio Grande do Sul (UNIJUÍ) located in the
municipality of Augusto Pestana - Rio Grande do Sul - Brazil, at coordinates 28 ° 26 '30' 'S and 54 ° 00' 58 '' W,
altitude 280 m. The collection of plant material complies with relevant institutional, national, and international
guidelines and legislation. The soil is classified as typical distroferric Red Latosol. According to the climatic
characterization of Köeppen, the region’s climate is of the Cfa type (humid subtropical), with four distinct seasons.
The average annual temperature is 19.9°C, and the average annual rainfall is 1774 mm.

Seventy-eight white oat genotypes were evaluated in 2008 and 2009. Each year, they were assessed without and
with a fungicide to establish pr in four experimental sets (E1, E2, E3, and E4). The fungicide used was Orkestra, an
active ingredient of the pyraclostrobin group (333 g l− 1). The design was in randomized blocks with three
replications.

The characteristics were grain yield (GY, Kg ha− 1) which were used as the response variable, and the others as
explanatory variables (inputs), that is, mass edition models of a thousand grains (MTG, grams); hectoliter weight
(HW, kg ha− 1); days between emergence and maturation (DEM, day); lodging percentage (LP, in percentage, where
1% bedded little and 100% bedded down completely); days from emergence to flowering (DEF, day); days from
flowering to maturity (DFM, day); plant height (PH, cm); leaf rust severity (LRS); stem rust severity (SRS); leaf spots
(LS). They were used to compose artificial neural networks of white oat genotypes.

2.2. Methodologies for predicting and verifying the importance of
characteristics

2.2.1. Multiple Regression
Stepwise multiple regression is the variable selection method, which aims to explain the relationship between a set
of independent variables and a dependent variable. The coefficient of determination ( ) aims to estimate how
much of the independent variable is explained by the total variation of the dependent variable [3, 4].

2.2.2. Computational intelligence for the importance of variables

2.2.2.1. Multilayer Perceptron - PMC
The importance of predictors through the PMC network was quantified using two techniques. The first, based on
Garson's (1991)[7] algorithm modified by Goh (1995)[6], consists of partitioning the neural network connection
weights to determine the relative importance of each input variable within the network [3, 4].

The equation of the relative importance of variables is equal to

1

The matricial model is shown as follows

R2

IR = WV
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,

where,  represents the matrix of weights of the layer c neuron, considering Nj neurons and Nj−1 inputs; E is the
first neuron that starts from inputs; y refers to the desired output layer and IR: relative importance of the variable.

After the network is established, the importance of variables (inputs) can also be obtained, considering the impact
of destructuring or disturbing the information of a given input on the estimation of the coefficient of determination
[3, 4].

The relative importance of the variable by the permutation of  is described in the following equation:

2

where,  is the  of the RNA model adjusted to the observed predictor and response variables; is the 

 of the ANN model fitted to the modified dataset where  is permuted; : is the average value of 

after mth permutation of the datasets.

After some criteria used on the best topology, the following PMC network structures were adopted: (a) topology 1:
10-11-1: ten inputs, 11 hidden neurons in the middle layer and one neuron in the output layer; (b) topology 2: 10-11-
11-1: ten inputs and two hidden layers with 11 neurons in the middle layers and one neuron in the output layer; (c)
topology 3: 10-11-11-11-1: ten inputs, and three hidden layers with 11 neurons in the middle layers and one neuron
in the output layer; (d) topology 4: 10-3-4-11-1: ten inputs, and three hidden layers with three, four and 11 neurons in
the middle layers and one neuron in the output layer.

2.2.2.2. Radial Base Function Network – RBF
The prediction efficiency is measured by the coefficient of determination and the relative importance of each input
estimated by the technique of destructuring the information of each explanatory variable, as already described for
PMC.

2.2.3. Machine Learning for the importance of variables
To quantify the importance of variables through a machine learning approach, the decision tree and its refinements,
random forest, bagging, and boosting were used [3, 4].

The importance of variable IV is described in the following Equation:

3
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where,  is the permutation of the values of each variable in the dataset where  is swapped; 
: values of the estimate of the original non-permuted variable data.

2.2.4. Importance of variables, in reduced models, in the
prediction of grain yield
The biometric technique that led to the best GY prediction results and information regarding the importance of
predictors was considered.

2.3. Training and Validation Sets
The training set included the same individuals for modeling using all methodologies and was composed of 67% of
the individuals, which corresponds to 2/3 of the randomly selected individuals. The remaining 33% (1/3) of the
individuals constituted the validation set. In previous studies, 60–90% of individuals constituted the training set [9].
All analyses were performed using the GENES software in integration with the Matlab software [10, 11].

3. Results

3.1. Prediction of grain yield by different approaches
The estimate of the coefficient of determination, for all methodologies using the ten defining agronomic
characteristics in the prediction of grain yield (GY) in white oats is shown in Table 1.

Table 1
Mean of the maximum estimate of the coefficient of determination for the training set, in four environments

corresponding to the data set of experiments with and with fungicide in two agricultural years, to predict the grain
yield in white oat (Avena sativa L.).

Approach Technique E1 E2 E3 E4

AM BO 92.29 86.69 81.23 79.23

DT 85.37 76.39 61.78 64.65

BA 94.61 93.89 92.70 92.98

RF 64.91 55.09 10.57 24.48

IA PMC-1 73.25 71.42 30.14 59.84

PMC-2 96.45 90.12 56.72 57.94

PMC-3 86.13 88.58 61.45 68.62

PMC-4 75.16 85.32 87.34 58.77

RBF 90.12 73.76 80.72 76.44

Conventional RM 61.02 46.07 20.67 32.72

AI: Artificial Intelligence; AM: Machine Learning; RM: Multiple Regression; PMC: Multilayer Perceptron; PMC:
Multilayer Perceptron; PMC-1: Multilayer Perceptron with (10-11-1); PMC-2: Multilayer Perceptron (10-11-11-1);
PMC-3: Multilayer Perceptron (10-11-11-11-1); PMC-4: Multilayer Perceptron (10-3-4-11-1); RBR: Radial Base
Network; DT: Decision Tree; RF: Random Forest; BA: Bagging; BO: boosting. E: environments. E1 and E3: no
fungicide; E2 and E4: with fungicide.

MSEperm,xi
xi

MSEnperm
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Based on Table 1, it is possible to compare the approach that is more efficient for the prediction of GY. Higher
values of indicate that the prediction target variable has a better fit considering the ten explanatory variables
used as predictors in this analysis [3, 4]. Among the methodologies used in this study, it was found that multiple
regression presented a lower estimate of , indicating the existence of non-linear associations between the
explanatory variables not considered in the model. Artificial intelligence and machine learning methodologies, in
turn, stood out for their ability to extract non-linear information from model inputs [5, 8], as seen in Table 1. Other
authors have already highlighted the abilities of neural networks [12, 13] and machine learning [3, 4, 14] to better
capture non-linear relationships when compared to conventional methodologies.

The results obtained by different approaches show that there was a discrepancy between the maximum estimate of
for the predictive variable in the same environments (Table 1). This discrepancy in the estimate of was also

reported by [3, 4]. It is noteworthy that the differences in results obtained in these analyzes are indicative that the
environment influences the estimate of  and, consequently, the choice of the best prediction model for the
response variable.

The machine learning approach proved to be more efficient compared to the other approaches (Table 1). There was
a low estimate of maximum in the random forest procedure, for all environments. On the other hand, this
procedure was superior to the multiple regression approach for the same environment, except the environment
without fungicide (E3), which corresponds to 10.57%. The low estimate of maximum in the random forest
procedure was also demonstrated in flood-irrigated rice [4] and on simulated data with different heritability [3]. This
procedure involves the steps of randomly resampling the set of explanatory variables, and building several decision
trees that will constitute a random forest that will allow the prediction and estimation of scores that will lead to the
evaluation of the importance of predictors in a process repeated several times.

Regarding the environments and the bagging procedure, it appears that the estimates of were higher than 92.70
%,making this approach the best highlight for use in the analyzed data sets. High estimates (with reference to
values around 80%) of were also obtained using machine learning methodologies by boosting procedures, in
addition to bagging, for all prediction data sets (Table 1). [3, 4] showed that the machine learning approaches for
the bagging and boosting procedures were more consistent in obtaining a higher overall mean estimate of ,
about predictive variables. The decision tree (DT) and random forest methodology did not stand out from other
machine learning procedures (Table 1).

Artificial intelligence approaches based on RBF provided adjustments whose were greater than 70% in all
environments (Table 1). In this procedure, the highest estimate maximum was 90.12% (± 5.79) and the lowest
73.75% (± 1.67), which corresponds to environments E1 and E2, respectively. [4] found an estimate of maximum 
ranging from 48–99% in different environments for the flood-irrigated rice crop. For simulated data with the
different genetic structures the maximum estimate of  ranging from 44–54% [3] and [15] obtained results of 
consistent for different genetic structures. [16] evaluated bean cultivars and obtained an estimate of  for the
characteristics days to first flower and flowering days of 94.10% and 94.40%, respectively. This procedure has a
good ability to handle complex interactions compared to semiparametric and linear regressions [15, 17]. Generally,
RBF is quick to learn from the data used as training information and provides a unique solution compared to
perceptron ANNs [9, 15, 17].

Radial basis function networks have a good ability to handle interactions compared to semiparametric and linear
regressions [15]. [15] applied the RBF in studies using simulated traits with 30% and 60% heredity for variable
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selection. The authors identified greater efficiency in the selection by the RBF when the scenario involved epistatic
interactions in the gene control of the studied characters. [9] observed that it is possible to improve prediction in
nonparametric models when the selection includes markers that are not directly related to the characteristics of
interest. [4] applied RBF to predict grain yield, grain length-width ratio, and panicle length in flood-flooded rice. These
authors argue that RBF has a high performance in predicting the importance of variables. [3] evaluated the
importance of auxiliary traits of the main trait based on phenotypic information and previously known genetic
structure using RBF and demonstrated the efficiency of this network to quantify the importance of variables.

Regarding procedure PMC-1 (10-11-1), the highest estimate of maximum was observed in E1- 73.25% and the
lowest in E3, with an estimate of 30.14%, both environments correspond to the one without fungicide. In the
procedure PMC-2 (10-11-11-1) and PMC-3 (10-11-11-11-1) the highest estimates were observed in E1 and E2 and the
smallest in E3 and E4, respectively. For the same hidden layer number that corresponds to PMC-3 (10-11-11-11-1)
and PMC-4 (10-3-4-11-1). We observed lower estimates of maximum  for the PMC-4 procedure, except the E3
environment. This shows that the number of neurons in the layer influences the estimation of  maximum. [3]
argued that the number of neurons influences the estimation of the coefficient of determination.

The PMC network is widely used in the predictive process [3, 4, 18], since the success of this network has already
been demonstrated in several research groups that have shown mathematically that, with only a single hidden layer,
this network works very well with different numbers of neurons in the hidden layer [18].

Thus, machine learning is actually more efficient for selecting phenotypic traits because it can handle reduced or
redundant information about phenotypic traits [3]. [19] evaluated the importance of variables by bagging, random
forest, boosting, decision tree, PML and RBF and reported that PML and RBF achieved better results. [3, 4] verified
that the methodologies of computational intelligence and machine learning in the prediction allowed to identify the
explanatory phenotypic characteristics that should be prioritized and established as auxiliary characteristics for the
indirect selection.

The efficiency of ANNs in prediction problems given their ability to extract relevant information from large data sets
[20] and generalize relatively inaccurate information [21], was very well expressed by the results obtained (Table 1).
The same can be seen for methodologies based on machine learning, which are capable of dealing with more
reduced or redundant information in the input variables [3, 4]. However, another study as important as prediction
and which is often not carried out is the identification of more important predictive variables, which is an important
factor in the decision-making process [22]. Thus, after the prediction analyses, analyzes were carried out to quantify
the importance of variables through the methods of artificial intelligence and machine learning, in order to identify,
among the set of explanatory variables, those that should be prioritized and identified as auxiliary characteristics in
indirect responses to selection.

3.2. Linear relationship between predictor and grain yield
variables in white oat
The greatest linear associations with GY may be a preliminary indication that the variables, individually, are
important in the prediction of GY. In multivariate prediction models, a predictor variable, with high correlation with
the response variable, may lose its importance due to its redundancy, considering that, in the model, it may be
represented by another associated. Thus, in addition to quantifying the linear relationships between predictor-
response, it is important to quantify and appreciate the linear relationships, expressed by linear correlation
coefficients, between all predictors in the search for redundancies. In this work, these associations were represented

R2

R2
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in a correlation network that contains red and green lines that represent negative and positive correlations,
respectively, and their width is proportional to the magnitude of the correlations (Fig. 1). Regarding the phenotypic
correlation network, they observed that the structure of correlated groups aiming to predict GY. In this network, the
similarity between the phenotypic characteristics and the phenotypic correlation patterns is highlighted.

The characteristics that present groups with GY in E1 were MTG, HW and PH that correlated positively, but varying
in magnitude, and the negatively correlated was LRS. In relation to E2, the positively correlated characteristics
consist of: PH and MTG; and negatively LS and DFM. For E3, which represents no fungicide, the characteristic that
is negatively correlated was SRS. Environment 4, the positively correlated group consists of HW and DEF and the
negative DEM (Fig. 1).

3.3. Importance of variables in prediction by Artificial Intelligence
approach

3.3.1. Multilayer Perceptron (PMC)
Estimates of the coefficient of determination of grain yield prediction by PMC attributing perturbation to the

genotypic information are shown in Table 2. These results show large discrepancies in the  in comparing the
environments with each other, which makes interpretation difficult. In environments E1 and E4, which correspond to
environments without fungicide, the characteristics LP, PH, LRS were efficient in quantifying the response variable

GY due to the reduction in the estimate of  as a function of the strategy of attributing disturbance to phenotypic
information.

R2*

R2*



Page 9/18

Table 2
Estimates of the coefficient of determination of grain yield prediction in white oat (Avena sativa L.), using PMC

attributing perturbation to genotypic information.

  E1 E2

Input TOP1 TOP2 TOP3 TOP4 TOP1 TOP2 TOP3 TOP4

MTG 70.02 87.37 64.93 74.93 31.92 23.19 9.73 26.47

HW 71.78 78.42 70.44 72.44 54.25 87.37 86.02 84.30

DEF 76.51 76.36 74.89 64.89 54.68 65.92 48.33 75.16

DFM 75.18 86.87 68.59 78.59 43.67 36.65 70.15 50.05

DEM 76.54 77.17 83.87 73.87 56.49 74.88 75.94 77.60

PH 61.01 80.26 49.89 59.89 53.23 63.91 33.01 55.37

LP 75.26 66.07 62.90 67.90 46.46 71.41 76.46 68.43

LRS 52.80 33.62 10.33 8.33 52.72 73.18 85.34 67.20

SRS 76.59 78.03 71.10 71.10 57.33 80.89 58.86 60.60

LS 75.19 80.32 81.71 71.81 56.85 76.40 74.77 72.44

  E3 E4

Input TOP1 TOP2 TOP3 TOP4 TOP1 TOP2 TOP3 TOP4

MTG 32.34 33.29 52.69 65.34 51.85 38.73 50.93 58.67

HW 21.20 12.64 26.31 42.81 47.09 52.58 26.67 37.82

DEF 30.70 54.58 73.53 57.07 37.84 45.99 42.69 34.25

DFM 30.93 33.23 36.08 50.12 55.95 52.81 56.06 53.65

DEM 32.58 48.50 79.57 68.96 40.57 46.46 31.72 50.97

PH 29.51 35.36 57.87 44.98 50.74 53.91 55.85 56.06

LP 18.57 39.66 29.95 51.51 59.52 48.74 57.27 59.37

LRS 4.48 11.46 24.87 21.62 44.69 29.64 45.38 39.15

SRS 24.65 19.57 38.52 9.99 39.55 42.86 31.70 40.07

LS 26.36 12.91 49.10 45.01 56.54 37.20 45.79 59.26

MTG = Thousand Grain Mass in grams; HW = Hectoliter Weight; DEM = Days between Emergency and
Maturation; PH = percentage of lodging; GY = Grain yield in kilograms per hectare; DEF = Days from Emergence
to Flowering; DFM = Days from Flowering to Maturation; PH = Plant Height; LRS = Leaf Rust Severity; SRS = Stem
Rust Severity and LS = Leaf Spots; E: environments. E1 and E3: no fungicide; E2 and E4: with fungicide.
Topology- TOP1: Multilayer Perceptron with (10-11-1); TOP2: Multilayer Perceptron (10-11-11-1); TOP3:
Multilayer Perceptron (10-11-11-11-1); TOP4: Multilayer Perceptron (10-3-4-11-1); E: environments. E1 and E3: no
fungicide; E2 and E4: with fungicide.

Regardless of the number of neurons in the output layer and a single hidden layer, they agreed to pinpoint the most
important variables to predict GY. This result shows that these variables are important in predicting GY, as the
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disturbance in their values led to a considerable reduction in the quality of the fit. In the E2 environment, the MTG
characteristic was the most important in predicting GY.

There was a discrepancy in the number of neurons in the output layer and hidden layer, pointing out that the most
important variables in E4, which correspond to the fungicide environment. With only one neuron in the output layer
and a single hidden layer they showed that DEF and SRS were the most important due to the reduction in the

estimate of . With two neurons in the middle layer and a single hidden layer they demonstrated that LRS and LS
for the target prediction variable. When we use a neuron in the input layer, and three hidden layers with 11 neurons
in the intermediate layer and one neuron in the output layer, the characteristics that proved to be the most important
were HW and SRS. On the other hand, with three hidden layers with three, four and 11 neurons in the intermediate
layer, the important characteristics in predicting the GY were: LRS, DEF and HW. [4] reported that with only one
neuron in the output layer and a single hidden layer, they agreed to point out that the most important variables were
grain width and length in irrigated rice, given the significant drops in estimated values of observed when we
disturb the variables

The importance of the variables was quantified by assigning destructuring to the genotypic information referring to
each variable, in order to observe what changes would occur in the values of the . It is important to point out that,
in this Table, reductions in the values of  after attributing disruption to the genotypic information referring to
each variable, are indicative that this variable is important in relation to the others for purposes of prediction with
the already established network.

3.3.2. Radial Base Network (RBF)
The estimation of the importance of characters in white oat attributing disturbance to the information of an input
variable after the RBF has been established is described in Table 3. In this Table, the relative importance of each
input estimated by the technique of destructuring the information of each variable explanatory. When using this

strategy, drastic reductions in the values of were observed for the most important variables and LRS for the
predictive variable GY, in the E1 and E4 environments. In practice, the intensity of this trait reduces genetic progress

to increase grain yield. In the E2 environment, the variable that suffered the greatest reduction in was DMF, with
an estimate of 44.47%. This feature increases grain yield, as more photoassimilates are produced and translocated
to grains. However, late cycle cultivars tend to be more productive in relation to the initial cycle, as they obtain an
increase in the amount of photoassimilates that are translocated to the grains [4].

R
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R2*
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Table 3
Coefficient estimates for determining grain yield prediction in white oat (Avena sativa L.) using the RBF attributing

perturbation to genotypic information.
Input E1 E2 E3 E4

MTG 81.04 58.97 47.98 40.77

HW 76.70 60.73 65.01 53.99

DEF 85.43 68.16 72.11 47.52

DFM 84.30 44.37 52.47 65.02

DEM 80.99 68.16 74.24 54.61

PH 73.97 59.36 62.75 72.19

LP 81.96 68.07 64.71 64.71

LRS 60.13 63.30 71.59 45.04

SRS 84.38 70.50 69.10 63.74

LS 88.37 61.23 54.09 52.25

MTG = Thousand Grain Mass in grams; HW = Hectoliter Weight; DEM = Days between Emergency and
Maturation; PH = percentage of lodging; GY = Grain yield in kilograms per hectare; DEF = Days from Emergence
to Flowering; DFM = Days from Flowering to Maturation; PH = Plant Height; LRS = Leaf Rust Severity; SRS = Stem
Rust Severity and LS = Leaf Spots; E: environments. E1 and E3: no fungicide; E2 and E4: with fungicide.

The results show that the most important variable using the RBF was MTG, in the E2, E3 and E4 environments, with
estimates of 58.97%, 47.98% and 40.97%, respectively. In practice, MTG influences the grain yield in white oats,
since the higher MTG, consequently, the higher GY. This justifies the results of this study in white oats in the
prediction of GY.

The results obtained corroborate the expectation about the RBF in quantifying and revealing the importance of the
characteristics using the strategy of causing disturbances from the permutations or fixation of the phenotypic
values of the input variables. Our study demonstrates the ability of RNA to quantify the importance of phenotypic
characteristics in white oats. Techniques that show the impact of interruption or disturbance in the information of a
given input in the estimation of the coefficient of determination and partition of the connection weights of the ANN
were presented. These techniques were effective in estimating the true importance of phenotypic traits. Therefore,
there is a certain agreement between the results found by the two computational intelligence methodologies of PMC
networks and RBF networks.

3.4. Importance of variables in predicting by approach Machine
Learning
Table 4 shows the means of the relative contributions of the explanatory variables for grain yield prediction by
estimating the minimum squared error increment percentage (IMSE), which is constructed by swapping the values
of each variable in the data set, and comparing with the prediction of the original non-permuted dataset of the
variable. In this case, unlike the strategy used for the computational intelligence methodologies of PMC and RBF
networks, for which lower values of indicated greater importance of that variable for the model, in the machine
learning approach the importance of the explanatory variable it is related to the estimation of the average decrease

R2
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in the precision of the model through the IMSE so that the higher this estimate, the greater the importance of the
variable.

Table 4
Average estimate of the relative contributions of the explanatory variables for grain yield prediction in white oat

using a machine learning approach, in four environments corresponding to without and with fungicide application.
VA E1 E2 E3 E4

BA RF BO BA RF BO BA RF BO BA RF BO

MTG 7.58 7.94 12.37 10.47 9.84 10.89 1.04 1.53 4.49 3.55 3.21 3.75

HW 10.11 10.68 15.29 2.19 2.23 6.57 2.2 1.75 3.51 3.83 4.44 3.93

DEF 3.29 2.42 7.55 6.85 5.79 6.73 3.58 3.5 4.60 11.46 11.49 9.18

DFM 1.59 2.21 2.97 16.94 16.84 12.25 0.8 -0.4 4.22 5.57 4.68 4.82

DEM 3.46 3.1 6.35 6.44 6.06 6.28 2.14 1.86 3.43 6.12 5.95 5.17

PH 10.74 10.3 9.65 10.01 8.29 9.32 -0.93 -0.24 2.72 0.8 -0.45 1.02

LP 2.83 2.49 5.94 1.36 1.08 2.79 3.04 3.04 2.96 0.36 -0.66 0.89

LRS 20.87 20.1 29.59 9.27 9.29 16.05 9.91 10.91 12.29 4.19 4.58 7.02

SRS 7.32 7.76 5.60 3.09 2.25 3.65 3.52 3.97 3.71 0.8 1.62 2.04

LS 3.11 3.67 4.69 3.62 2.91 3.74 3.22 2.95 3.30 3.99 3.49 3.59

MTG = Thousand Grain Mass in grams; HW = Hectoliter Weight; DEM = Days between Emergency and
Maturation; PH = percentage of lodging; GY = Grain yield in kilograms per hectare; DEF = Days from Emergence
to Flowering; DFM = Days from Flowering to Maturation; PH = Plant Height; LRS = Leaf Rust Severity; SRS = Stem
Rust Severity and LS = Leaf Spots; FA: random forest; BA: Bagging; BO: Boosting; VA: auxiliary variable; E:
environments. E1 and E3: no fungicide; E2 and E4: with fungicide.

Based on Table 4, the variables that obtained the highest IMSE estimate in all machine learning methodologies in
relation to environments without fungicides were: LRS, HW, PH, and MTG; DEF, SRS, and LRS, E1, and E3,
respectively. The variable that showed to be more efficient in these environments was LRS. This justifies that this
variable can be used in the indirect selection process when the target variable of prediction is GY. To environments
with fungicides, the most important variables were: MTG, DFM, PH, and LRS; DEF, DFM, DEM, and LRS, which are
represented by E2 and E4, respectively. For this environment with fungicide, the variables DFM and LRS proved to be
efficient in estimating the prediction of grain yield in white oat.

The random forest and bagging methodologies were coincident in quantifying the same explanatory variables.
Similar result is reported by [3, 4]. Regarding the boosting procedure, the results show discrepancies. On the other
hand, this procedure was more consistent in variable prediction. In this procedure to estimate the importance of a
variable using GY as a predictive target, the variables: MTG, HW, PH, and LRS; MTG, DEF and LRS stood out in the
environment without fungicides, represented by E1 and E3, respectively. To the fungicide environment, the important
variables were: MTG, DFM, PH, and LRS; DEF, DFM, DEM, and LRS, respectively. When using the boosting procedure,
the variable that stood out in all environments was LRS. This justifies that this variable can be used to predict GY in
white oats.
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The bagging technique involves generating several distinct training sets from the original dataset. Final predictions
are calculated by averaging all generated predictions. This is useful for decision tree and artificial neural network
techniques that are sensitive to small changes in training data [23].

3.5. Importance of variables, in reduced models, in prediction by
approach

3.5.1. Machine Learning
This topic considered the biometric technique that led to the best GY prediction results and the information
regarding the importance of predictors, which was bagging.

The average estimate of the relative contributions of the explanatory variables for grain yield prediction in white oat
using the bagging technique, after eliminating auxiliary variables of smaller relative contributions, in four
environments corresponding to without and with fungicide application is shown in Table 5. The choice of this
technique (bagging) was based on the estimate of the coefficient of determination (Table 1), which was greater
than 90%, and the elimination of auxiliary variables of the smallest relative contributions established by Table 4.

Table 5
Estimate of the coefficient of determination for the training set, in four environments corresponding to the data set

of experiments without and with fungicide in two agricultural years, to predict the grain yield in white oat (Avena
sativa L.) utilizing the bagging technique.

Predictors E1 E2 E3 E4

 (v = 10)
94.61 93.89 92.70 92.98

Deleted DFM LP PH LP

 (v = 9)
94.85 94.34 92.83 93.05

Deleted DFM, LP LP, HW PH, DFM LP, PH

 (v = 8)
94.26 93.50 92.03 93.11

Deleted SRS, LS SRS, LS SRS, LS SRS, LS

 (v = 8)
94.95 94.40 91.74 92.84

HW = Hectoliter Weight; LP = percentage of lodging; DEF = Days from Emergence to Flowering; DFM = Days from
Flowering to Maturation; PH = Plant Height; SRS = Stem Rust Severity and LS = Leaf Spots; E: environments. E1

and E3: no fungicide; E2 and E4: with fungicide; : coefficient of determination; v: variables.

The importance of predictors through the elimination of auxiliary variables of smaller relative contributions was
quantified by using it in several ways. The first, based on the elimination of only one of the predictor variables (DFM,
LP, PH, and LP), in E1, E2, E3, and E4, respectively, and then two variables that contributed the least. Finally, we
opted for the elimination of the SRS and LS variables, which showed a lower estimate of the percentage of
minimum squared error increment in all environments.
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2

R
2
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After eliminating auxiliary variables with smaller relative contributions, the maximum estimate of the coefficient of
determination is similar when we use all auxiliary variables to predict GY (Tables 1 & 5).

4. Discussion
The literature has highlighted machine learning techniques as efficient tools in quantifying the relative importance
of variables, in view of their simplicity, the non-use of assumptions about the distribution of explanatory variables,
and also due to their robustness in relation to quantity, redundancy and environmental influences [3, 4, 22, 24].
Furthermore, such techniques do not require an inheritance specification model and can account for non-additive
effects without increasing the number of covariates in the model or computation time [25]. The bagging technique
shows good predictive performance in practice; it works well for multidimensional problems and can be used with
output from multiple classes, categorical predictors, and unbalanced problems [26]. Satisfactory results of variable
selection using the bagging and random forest algorithm in the presence of correlated predictors were reported by
[26]. Discriminatory power, redundancy, precision, and complexity can influence the indices or statistics used to
quantify the importance of auxiliary traits in predicting a main characteristic.

Genetic improvement for desired traits in different crops has been a time-consuming, laborious and expensive
process. Breeders study generations of plants and identify and modify desired genetic traits as they assess how
traits are expressed in offspring [27]. The application of computational intelligence and machine learning to identify
ideal sets of observable characteristics (phenotypes) can allow informed decisions and achieve highly relevant
results in breeding programs. In addition, these methodologies can help predict auxiliary traits with the best
performance under different agricultural management practices.

We compare different approaches to selecting or discarding variables that have been recently proposed to identify
relevant predictive variables within a regression problem. Furthermore, we included in our comparison a traditional
method that aims to find a small subset of important variables with optimal predictive performance in the white oat
crop. It is noteworthy that the characteristics used in this study are difficult to obtain and their evaluation can be
costly if there is a greater number of genotypes to be evaluated. In this context, the study of the most important
characteristics in the prediction becomes necessary, since it is possible to reduce the physical effort, cost, use of
labor, and time in the experimentation [27].

Therefore, our study presents the performance of some methodologies to assess the relative contributions of each
variable through computational intelligence and machine learning in white oat culture. It is considered that the
approach to estimate the effect of explanatory variables on genetic improvement has successfully identified the
true importance of each variable, including those that exhibit strong and weak correlations with the main variables,
which in our case is grain yield.

Methodologies based on machine learning and computational intelligence do not depend on stochastic information
and tend to be more efficient, while conventional methodologies depend on the normal distribution of phenotypic
characteristics. Furthermore, machine learning and computational intelligence methodologies make no
assumptions about the model and can capture complex factors in predictive models. In machine learning, a priori
knowledge of prediction is not needed if the data produces these effects, and no assumptions are made about the
distribution of phenotypic values [10]. Machine learning algorithms have the advantage of modeling data non-
linearly and non-parametrically [28]. Unlike many traditional statistical methods, these algorithms are built with the
advantage of handling noisy, complex, and heterogeneous data [29]. Researchers now have the ability to identify
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the individual and interactive contributions of predictor variables to the white oat crop using artificial intelligence
and machine learning.

5. Conclusion
Computational intelligence and machine learning methodologies were able to quantify the importance of
explanatory variables in predicting white oat grain yield. The net with only one hidden layer was efficient to
determine the relative importance of variables in white oat.

The bagging technique showed a high estimate of the coefficient of determination higher than the others. Simpler
models, excluding predictors, are as efficient as more complex models, indicating that quantifying the importance of
predictors is important to minimize costs, ensuring the same levels of efficiency as the predictive model.
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Figure 1

Phenotypic correlation network for the three distinct groups in four environments corresponding to without and with
fungicide in two agricultural years, to predict grain yield in white oat (Avena sativa L.). The line width is proportional
to the strength of the correlation. E1 and E3; E2 and E4 represent the environments without and with fungicide,
respectively. The orange color represents the grain characteristics; The yellow color represents the plant
characteristics and the green disease severity. MTG = Thousand Grain Mass in grams; HW = Hectoliter Weight; DEM
= Days between Emergency and Maturation; PH= percentage of lodging; GY = Grain yield in kilograms per hectare;
DEF = Days from Emergence to Flowering; DFM= Days from Flowering to Maturation; PH= Plant Height; LRS= Leaf
Rust Severity; SRS=Stem Rust Severity and LS= Leaf Spots. 


