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Abstract
Aspergillus sydowii is a kind of fungus with rich metabolic capacity, halophilic and can cause coral
disease. In this paper, 173 sugar transporter genes in A. sydowii H-1 genome were identi�ed and divided
into 9 subgroups by bioinformatics method. The transcription levels of these genes were analyzed under
different fermentation time and different salt concentration. Combined with protein interaction network
analysis, we identi�ed that a glycerol transporter AsSTL1 gene interacted with �ve MAPK cascade genes:
HOG, SSK22, STE11, PBS2 and FUS3. The abundant sugar transporter genes may be an important
condition for A. sydowii to survive in extreme marine environment, and also indicate that these sugar
transporters respond to low carbon source stress caused by prolonged fermentation cycle and salt
stress. 

1. Introduction
Aspergillus sydowii is a �lamentous fungus with strong environmental adaptability and wide distribution.
It has been reported from the sea below 4450 meters[1], land plants[2], animal skin and respiratory tract,
humus soil to the cold Antarctic region[3]. In recent years, it has been reported that A. sydowii produces
quinazolone, laccase, cellulose degrading enzyme and other abundant secondary metabolites and
enzymes[4–7] and A. sydowii of marine origin is pathogenic to coral[8–11]. In addition, this species is
called halophilic fungus because of its salt tolerance[12, 13].

Carbohydrates such as glucose, sucrose, fructose, etc. can be used as energy substances or signal
molecules, but they can’t directly cross the membrane. They need sugar transporters (STs) to transport
them from outside the cell membrane to inside the membrane. The STs family is a member of the major
facilitator superfamily (MFS), and generally has 12 α transmembrane helix [14]. Sugar transport is the
�rst step of sugar metabolism, which is of great signi�cance for the fermentation of industrial
microorganisms. Overexpression of HXT1 in Saccharomyces cerevisiae can increase the yield of
ethanol[15]. However, overexpression of pentose transporter could accelerate the fermentation of mixed
sugars[16]. STs are not only an important way for cells to obtain energy, but also help to resist abiotic
stress. Under high salt stress, Apple could enhance the expression of MDSUT2.2 through protein
phosphorylation to improve salt tolerance, and the salt tolerance of MDSUT2.2 transgenic plants was
enhanced[17]. It has been reported that sugar transporter STL1 controls glycerol uptake by yeast and
plays an important role in physiological processes such as cell osmotic pressure regulation and glycerol
catabolism [49] In S.cerevisiae, the expression of STL1 is inhibited by glucose, but HOG1 will activate the
expression of STL1 under hypertonic conditions[18, 19].

The research on yeast related STs is relatively clear, but there is still a lack of systematic research on
�lamentous fungi. With the progress of sequencing technology, we can understand and mine more STs
through genomics and transcriptomics, so as to provide a theoretical basis for later experimental
veri�cation. In this study, we excavated the STs in the A. sydowii H-1 genome and preliminarily obtained
the possible functions according to the phylogenetic relationship. Through the analysis of the expression
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of STs in different fermentation periods (Fermentation for 2d and 8d) and different salt concentrations
(0M, 0.5M, 2M NaCl), we obtained 44 and 63 differentially expressed STs respectively. These genes are
differentially expressed in low carbon sources and high salt concentrations, which is indicated that it may
help the strain to cope with abiotic stress. Then we analyzed the protein regulatory interaction network
between the differentially expressed genes in high salt concentration and the genes in the MAPK cascade
pathway, and obtained a hub sugar transporter AsSTL1. This protein is clustered with the STL1 gene in
the phylogenetic tree, which connects multiple proteins in the MAPK cascade pathway and interacts with
the other sugar transporter, indicating that AsSTL1 responds to salt stress and is of great signi�cance for
cells to cope with stress.

2. Materials And Methods

2.1 Identi�cation of Sugar Transporters in A. sydowii H-1
The whole genome of A. sydowii H-1 has been sequenced. All proteins were searched against PFAM
database (Pfam 33.1) by hmmsearch (version: 3.1b1)[20]. Protein which hits to PFAM ID “PF00083” were
considered as STs.

In order to �nd the location of ST genes on chromosomes, we use MapChart (version:2.3.2) [21]to
visualize the location of these genes on chromosomes according to the gene annotation results.

2.2 Phylogenetic Analysis of STs
Total 173 STs in A. sydowii H-1 were used to construct phylogenetic tree. Another 61 fungal STs were
collected for subsequent analysis with reference to Mao Peng et al, 7 STs from Arabidopsis thaliana were
used as outgroups[22]. Muscle (version: 3.8.31)[23] is used for multiple sequence alignment. The
phylogenetic tree is constructed by RAxML (version: 8.2.11)[24], and the bootstrap repetitions is set to
100. Tree was visualized by iTOL (version:6, https://itol.embl.de/).

MEME (version:5.4.1 https://meme-suite.org/meme/tools/meme) [25] is used to predict motifs that may
be included in the sequence according to speci�c algorithms.

2.3 Expression Pro�les of ST Genes at Different Growth
Stages and Different Salt Concentrations
The mycelia fermented for 2 days and 8 days of A. sydowii H-1 were used to extract RNA for
transcriptome sequencing analysis. The speci�c data are in NCBI SRA database (BioProject:
PRJNA542911)[26]. Another transcriptome data (BioProject: PRJNA587059) is from strain A. sydowii
BMH-0004 which grown up on the medium containing different salt concentrations (0M,0.5M,2.0M)[27].

Use Trimmatic (version:0.39)[28] to �lter the low-quality data in the row data. And then the clean data was
mapped to A. sydowii H-1 genome by STAR (version: 2.7.10a)[29]. Next, the gene expression levels were
calculated and normalized via the expectation maximization method with RSEM (version:1.3.3)[30]. The
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expression levels of concerned genes under different conditions are displayed by using TBtools
(version:1.098745)[31] to draw heatmap.

2.4 Protein-Protein Interaction Network
Studying the interaction network between proteins is helpful to mine the core regulatory genes. After
analyzing the expression pattern of STs, we found that a large number of STs are differentially expressed
under different salt concentrations. In order to understand whether these genes play a role in coping with
salt stress, we use STRING database (version:) to explore whether there is protein interaction between STs
and genes in MAPK cascade pathway.

3. Results

3.1. Characteristic of Sugar Transporters in A. sydowii H-1
Through HMMER (version: 3.1b1), 173 proteins containing “PF00083”in the genome of A. sydowii H-1
were found. In order to �nd the location of ST genes on chromosomes, we use MapChart (version:2.3.2)
[21]to visualize the location of these genes on chromosomes (Fig. 1). A total of 26 contigs from the
genome assembly of H-1, and we could see that 173 STs were randomly distributed on the �rst 15
contigs. Contig00001 contains the largest number of STs with 28.

3.2. Phylogenetic Analysis of ST Genes
In order to understand the possible division of these 173 STs, we constructed a phylogenetic tree to divide
these proteins into 9 groups (Fig. 2), This grouping is consistent with that described before [22]. In group
A, Frt1_bcin was found to be a high a�nity proton coupled symporter speci�c for fructose[32], Fsy1_spas
was also an enzyme found in yeast that does not accept glucose as substrate and actively mediates
fructose transport[33], and The ITR1_scer and ITR2_scer play a primary and secondary role in the
transport of inositol in the medium containing the lowest content of glucose, respectively[34].So the other
8 STs may have the ability to transport fructose or inositol because they are more close to these proteins.
In group B, GalA_bcin and GalA_ncra were proven to transport d-galacturonic acid[35], Qa_ncra was
demonstrated the ability to transfer quinic acid[36], STs in this group was thought to have the function of
transporting d-galacturonic acid and quinic acid. In group C, XltA_anig[37], XltB_anig[37] and
XltA_anig[38] can transport xylose, and XltA_anig’s expression was able to restore growth on xylose,
glucose, galactose, and mannose as single carbon sources, indicating that this transporter accepts
multiple sugars as a substrate, therefore SUTs in this group may have ability to transport xylose and
hexose. In group D, HGT-1_ncra, HGT-2_ncra, Glt1_ncra were were identi�ed as the key components of the
glucose dual-a�nity transport system, which plays diverse roles in glucose transport and carbon
metabolism[39]. MstA_anid was de�ned as a high-a�nity glucose transporter expressed in germinating
conidia, and MstA_anid as a high-a�nity glucose transporter that operates in vegetative hyphae under
conditions of carbon limitation[40]. SNF3_scer and RGT2_scer serve as glucose receptors that generate
the signal for induction of genes involved in glucose uptake and metabolism[41, 42]. XYT1_ncra was
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pentose transporter from Neurospora crassa[43]. The rest are glucose and hexose transporters from
Aspergillus niger( MstH_anig)[44, 45], Ustilago maydis (hxt1_umay)[46], Aspergillus nidus
(AN10891_anid, AN1797_anid, mstE_anid )[40, 44, 45], and Saccharomyces cerevisiae (HXT1_scer,
HXT2_scer, HXT3_scer, HXT4_scer, HXT5_scer, HXT6_scer, HXT7_scer, HXT11_scer, HXT13_scer,
GAL2_scer )[47–52]. So STs in group D may serve as main mainly 6-carbon sugar transporter. In group E,
there are some sucrose transporter (Srt1_umay)[53] and maltose transporter (MAL11_scer, MAL31_scer,
MPH2_scer, MPH3_scer, MalP_aory)[54–57]. Proteins in group E may mainly transport polysaccharides.
And in group F, there is no known STs, and that the phylogenetic status of this group is between group E
and group G, which may have the functions of these two groups and indicate that the STs in this group is
still unknown. G group have cellodextrin STs (cltA_anid, CDT1_ncra, CDT2_ncra)[58, 59] and lactose STs
(LacpA_anid, LacpB/cltB_anid)[58, 60]. H group also contains glucose STs (Gtt1_thar, hxtA_anid,
HGT1_klac, )[45, 61, 62] and some kind of pentose STs such as arabinose (LAT_ncra, LAT_mthe,
HGT1_kmar, araT_stip)[63–65], xylose (XltC_anig, HGT1_kmar)[37, 64]. STs in H group may transport
glucose and pentose. And �nally for I group, Xyp29_psti and NCU00821_ncra xylose speci�c
transporters[65], and some are pentose transporter (XAT1_ncra, LAT2_amon)[43, 66], the others are
glycerol transporter (STL1_scer)[19] and glucose transporters (stp1_tree)[67]. In I group, STs may have the
ability to transport pentose, glucose and glycerol. Finally, Among the 173 STS, 171 proteins were divided
into 9 subgroups, and the remaining two proteins EVM0011030.1 and EVM0006650.1 were not classi�ed.
From the perspective of evolutionary tree, the functions of these two proteins may be closer to those of
similar subgroups, but they still need experimental veri�cation.

MEME (version:5.4.1 https://meme-suite.org/meme/tools/meme)[2] is used to predict motifs that may be
included in the sequence according to speci�c algorithms. As can be seen from the Figure S1, the number
of conservative motifs ranges from 2 to 10. In Group A (Figure S1b), all proteins contain motif1, motif2,
motif3, motif5, motif6, motif7. In Group B (Figure S1c), all proteins share only motif1. In Group C (Figure
S1d), all but motif9 are shared. In Group D (Figure S1e), all but motif4 are shared. In Group E (Figure S1f),
only motif5 is present in all proteins. motif1,2,4 and 5 are contained in all proteins in Group F (Figure
S1g). motif1,5 are contained in all proteins of Group G (Figure S1h), and motif8 does not exist in any
protein of this group. Except motif10, the protein of Group H (Figure S1i) contains all the other motifs. In
Group I (Figure S1j), only motif5 is present in all proteins.

3.3. Expression Pro�les of ST Genes at Different Growth
Stages and Different Salt Concentrations
At The mycelia fermented for 2 days and 8 days of A. sydowii H-1 were used to extract RNA for
transcriptome sequencing analysis. And the transcript levels were estimated with RSEM. The expression
levels of concerned genes under different conditions are displayed by using TBtools (version:1.098745)
[31]. We obtained 44 differentially expressed glycoprotein transport genes at different growth stages (Fig.
3). Among them, 19 STs were highly expressed in the prophase of fermentation, 25 STs were highly
expressed in the late fermentation stage. In the preliminary work of the laboratory, the reducing sugar
content was high on the second day of fermentation. With the fermentation time, the reducing sugar



Page 6/15

could hardly be detected on the eighth day of fermentation[26]. Under the condition of carbon source
restriction, the expression of more STs increased, means more STs operates under conditions of carbon
limitation, and also indicating that these sugar transporters are trying to maintain the survival of mycelial
and help them adapt to the harsh physiological environment.

To understand whether STs can help resist abiotic stress, we analyzed a set of salt tolerant transcriptome
data. Transcriptome data (BioProject: PRJNA587059) is from strain A. sydowii BMH-0004 which grown
up on the medium containing different salt concentrations (0M,0.5M,2.0M NaCl)[27]. Using STAR
(version: 2.7.10a)[29], we compared nine repeats of three conditions with the A. sydowii H-1 genome as a
reference, and the average alignment rate was 81. 88%. Next, the gene expression levels were calculated
and normalized via the expectation maximization method with RSEM (version:1.3.3)[30]. Genes with
differential expression in STs were used TBtools (version:1.098745)[31] to draw heatmap. Finally, we
found that 63 STs were differentially expressed at different salt concentrations (Fig. 4). Among them, 10
genes were only highly expressed at medium salt concentration (0.5 M NaCl), and were low expressed at
both no salt (0 M NaCl) and high salt conditions (2 M NaCl). The other 10 genes were only highly
expressed at no salt condition (0 M NaCl), and were low expressed at both medium ((0.5 M NaCl)) and
high salt conditions ((2 M NaCl)). 20 genes were only highly expressed at high salt concentration ((2 M
NaCl), indicating that these genes have important functions at the corresponding salt concentration. In
particular 20 genes expressed under high salt stress indicate that these glycoproteins may have
important functions to help mycelium resist stress. And under different stress conditions, the genes are
expressed differently, which also indicates that these genes have division of labor and cooperation in
coping with abiotic stress

3.4. Protein Interaction Network of Sugar Transporters
Mitogen activated protein kinase (MAPK) cascade pathway is composed of ser/thr protein kinase, which
is activated by extracellular stimulation and is highly conserved in all eukaryotic cells[68]. These kinases
activate the genes related to the synthesis of osmotic antagonists by phosphorylation, which can
regulate cell osmotic pressure in response to salt stress regulation and other abiotic stresses[69]. In order
to further understand whether sugar transporters are involved in carbon stress and salt stress, we
constructed the protein-protein interaction network of differentially expressed sugar transporters and
differentially expressed MAPK cascade genes under different salt concentration stress (Fig. 5). We found
that sugar transporter EVM0009831.1 interacts with genes in multiple MAPK cascade pathways,
including HOG1, STE11, PBS2, FUS3 and SSK22, and also interacts with downstream sugar transporters.
EVM0009831.1 is highly expressed only at high salt concentration, and a is clustered with STL1_scer
gene in the phylogenetic tree. STL1_scer is annotated as a glycerol transporter in Saccharomyces
cerevisiae[70], Small and uncharged glycerol is an important molecule in yeast metabolism and osmotic
adaptation, indicating that in response to salt stress, MAPK cascade may help cells resist salt stress by
regulating EVM0009831.1 to accelerate glycerol transport. Finally, we named EVM0009831.1 as AsSTL1.

4. Conclusion And Discussion
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We �nally found 173 STs in A. sydowii H-1 genome. Compared with 127 and 86 STs in Aspergillus
oryzae[71] and Aspergillus niger[72], this number is undoubtedly larger and indicate a high potential for
substrate utilization. Through analysis, we obtained a phylogenetic tree similar to the sugar transporters
in A. niger[72], which were divided into 9 subgroups including hexose, glucose, xylose, galactose, glycerol,
inositol, sucrose and other transporter types (Fig. 2). The heat maps of gene expression at different times
of fermentation showed that different families of STs may function at the same time, and the same
family of STs may also express at different times (Fig. 3). Many studies have shown that STs may be
related to cell stress resistance, such as Lily[73], Banana[74], Saccharomyces cerevisiae[75], etc. And for
A. sydowii, under salt stress, there are 63 STs were differentially expressed (Fig. 4). Through protein
network interaction analysis, we found that a hub gene AsSTL1 interacting with HOG, SSK22, STE11,
PBS2 and FUS3 (Fig. 5). These results indicate that AsSTL1 is an important protein in response to salt
stress.

In a word, we systematically analyzed the sugar transporters in H-1, identi�ed 173 sugar transporters
through bioinformatics methods, and their chromosomal localization and conserved motifs were draw.
Through phylogenetic analysis, these sugar transporters were divided into 8 subgroups, their functions
were roughly predicted according to the grouping results, for example, it may have the ability to transport
pentose, glucose, or macromolecular sucrose, etc. Then, we analyzed the differential expression of these
sugar transporters. There were 44 and 63 differentially expressed STs under different fermentation time
(2d and 8d) and different salt concentration (0M, 0.5M, 2M NaCl), respectively. Through protein network
interaction analysis, we found that EVM0009831.1, as the center, interacts with proteins in MAPK
cascade pathway and other STs, and it can be identi�ed as glycerol transporter through phylogenetic tree,
named as AsSTL1.
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Figures

Figure 1

Chromosomal localization of STs protein. 

Figure 2

Phylogenetic Analysis of SUT protein. The tree contains 173 putative sugar transporters in A. sydowii H-1
and other 61 fungi SUT protein 7 sugar transporters from Arabidopsis for tree rooting.
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Figure 3

Heat map of the expression of 44 ST genes in A. sydowii H-1.2d-1,2d-2,2d-3: Gene expression after 2 days
of fermentation. 8d-1,8d-2,8d-3: Gene expression after 2 days of fermentation. The color of the scale bar,
ranging from blue to red, represents low and high expressions, respectively.
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Figure 4

Heat map of the expression of 43 ST genes in A. sydowii BMH-0004 which grown up in different salt
concentrations (0M, 0.5M, 2.0M). The color of the scale bar, ranging from blue to red, represents low and
high expressions, respectively.

Figure 5
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A protein-protein interaction (PPI) network between STs and genes in MAPK cascade pathway. The nodes
represent proteins, and the edges represent the corresponding PPI. The con�dence score was required to
be greater than 0.4.
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