1 Dasari, V., Bhatt, K. H., Smith, C. & Khanna, R. Designing an effective vaccine to prevent Epstein-Barr virus-associated diseases: challenges and opportunities. Expert Rev Vaccines 16, 377-390, doi:10.1080/14760584.2017.1293529 (2017).
2 Balfour, H. H., Jr., Dunmire, S. K. & Hogquist, K. A. Infectious mononucleosis. Clinical & translational immunology 4, e33, doi:10.1038/cti.2015.1 (2015).
3 Bjornevik, K. et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 375, 296-301, doi:10.1126/science.abj8222 (2022).
4 Handel, A. E. et al. An updated meta-analysis of risk of multiple sclerosis following infectious mononucleosis. PLoS One 5, doi:10.1371/journal.pone.0012496 (2010).
5 Farrell, P. J. Epstein-Barr Virus and Cancer. Annu Rev Pathol 14, 29-53, doi:10.1146/annurev-pathmechdis-012418-013023 (2019).
6 Taylor, G. S., Long, H. M., Brooks, J. M., Rickinson, A. B. & Hislop, A. D. The immunology of Epstein-Barr virus-induced disease. Annual review of immunology 33, 787-821, doi:10.1146/annurev-immunol-032414-112326 (2015).
7 Dasari, V., Sinha, D., Neller, M. A., Smith, C. & Khanna, R. Prophylactic and therapeutic strategies for Epstein-Barr virus-associated diseases: emerging strategies for clinical development. Expert Rev Vaccines 18, 457-474, doi:10.1080/14760584.2019.1605906 (2019).
8 Gu, S. Y. et al. First EBV vaccine trial in humans using recombinant vaccinia virus expressing the major membrane antigen. Dev Biol Stand 84, 171-177 (1995).
9 Moutschen, M. et al. Phase I/II studies to evaluate safety and immunogenicity of a recombinant gp350 Epstein-Barr virus vaccine in healthy adults. Vaccine 25, 4697-4705, doi:10.1016/j.vaccine.2007.04.008 (2007).
10 Bu, W. et al. Immunization with Components of the Viral Fusion Apparatus Elicits Antibodies That Neutralize Epstein-Barr Virus in B Cells and Epithelial Cells. Immunity 50, 1305-1316 e1306, doi:10.1016/j.immuni.2019.03.010 (2019).
11 Ogembo, J. G. et al. A chimeric EBV gp350/220-based VLP replicates the virion B-cell attachment mechanism and elicits long-lasting neutralizing antibodies in mice. J Transl Med 13, 50, doi:10.1186/s12967-015-0415-2 (2015).
12 Sokal, E. M. et al. Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults. J Infect Dis 196, 1749-1753, doi:10.1086/523813 (2007).
13 Morrison, J. A., Klingelhutz, A. J. & Raab-Traub, N. Epstein-Barr virus latent membrane protein 2A activates beta-catenin signaling in epithelial cells. Journal of Virology 77, 12276-12284 (2003).
14 Lee, D. Y. & Sugden, B. The latent membrane protein 1 oncogene modifies B-cell physiology by regulating autophagy. Oncogene 27, 2833-2842, doi:1210946 [pii]
10.1038/sj.onc.1210946 (2008).
15 Smith, C., Beagley, L. & Khanna, R. Acquisition of polyfunctionality by Epstein-Barr virus-specific CD8+ T cells correlates with increased resistance to galectin-1-mediated suppression. J Virol 83, 6192-6198, doi:10.1128/JVI.00239-09 (2009).
16 Duraiswamy, J. et al. Induction of therapeutic T-cell responses to subdominant tumor-associated viral oncogene after immunization with replication-incompetent polyepitope adenovirus vaccine. Cancer Research 64, 1483-1489 (2004).
17 Duraiswamy, J. et al. Therapeutic LMP1 polyepitope vaccine for EBV-associated Hodgkin disease and nasopharyngeal carcinoma. Blood 2003.Apr.15.;101.(8.):3150.-6. 101, 3150-3156 (2003).
18 Thomson, S. A. et al. Minimal epitopes expressed in a recombinant polyepitope protein are processed and presented to CD8+ cytotoxic T cells: implications for vaccine design. Proc.Natl.Acad.Sci.U.S.A. 92, 5845-5849 (1995).
19 Dasari, V. et al. Prophylactic and therapeutic adenoviral vector-based multivirus-specific T-cell immunotherapy for transplant patients. Mol Ther Methods Clin Dev 3, 16058, doi:10.1038/mtm.2016.58 (2016).
20 Rakhra, K. et al. Exploiting albumin as a mucosal vaccine chaperone for robust generation of lung-resident memory T cells. Sci Immunol 6, doi:10.1126/sciimmunol.abd8003 (2021).
21 Ma, L. et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science 365, 162-168, doi:10.1126/science.aav8692 (2019).
22 Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519-522, doi:10.1038/nature12978 (2014).
23 Hanson, M. C. & Irvine, D. J. Synthesis of Lymph Node-Targeting Adjuvants. Methods Mol Biol 1494, 145-152, doi:10.1007/978-1-4939-6445-1_10 (2017).
24 Appelbe, O. K. et al. Radiation-enhanced delivery of systemically administered amphiphilic-CpG oligodeoxynucleotide. J Control Release 266, 248-255, doi:10.1016/j.jconrel.2017.09.043 (2017).
25 Bui, H. H. et al. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics 7, 153, doi:10.1186/1471-2105-7-153 (2006).
26 Trevaskis, N. L., Kaminskas, L. M. & Porter, C. J. From sewer to saviour - targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov 14, 781-803, doi:10.1038/nrd4608 (2015).
27 Seenappa, L. M. et al. Programming the lymph node immune response with Amphiphile-CpG induces potent cellular and humoral immunity following COVID-19 subunit vaccination in mice and non-human primates. bioRxiv, 2022.2005.2019.492649, doi:10.1101/2022.05.19.492649 (2022).
28 Silva, M. et al. A particulate saponin/TLR agonist vaccine adjuvant alters lymph flow and modulates adaptive immunity. Sci Immunol 6, eabf1152, doi:10.1126/sciimmunol.abf1152 (2021).
29 Parkin, D. M. The global health burden of infection-associated cancers in the year 2002. Int J Cancer 118, 3030-3044, doi:10.1002/ijc.21731 (2006).
30 Lanz, T. V. et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature, doi:10.1038/s41586-022-04432-7 (2022).
31 Cohen, J. I., Fauci, A. S., Varmus, H. & Nabel, G. J. Epstein-Barr virus: an important vaccine target for cancer prevention. Sci Transl Med 3, 107fs107, doi:10.1126/scitranslmed.3002878 (2011).
32 Taylor, G. S. & Steven, N. M. Therapeutic vaccination strategies to treat nasopharyngeal carcinoma. Chin Clin Oncol 5, 23, doi:10.21037/cco.2016.03.20 (2016).
33 Munz, C. Redirecting T Cells against Epstein-Barr Virus Infection and Associated Oncogenesis. Cells 9, doi:10.3390/cells9061400 (2020).
34 Jean-Pierre, V., Lupo, J., Buisson, M., Morand, P. & Germi, R. Main Targets of Interest for the Development of a Prophylactic or Therapeutic Epstein-Barr Virus Vaccine. Front Microbiol 12, 701611, doi:10.3389/fmicb.2021.701611 (2021).
35 Khanna, R. et al. Activation and adoptive transfer of Epstein-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc.Natl.Acad.Sci.U.S.A. 96, 10391-10396 (1999).
36 Morgan, A. et al. Epstein-Barr virus vaccines. Human herpesviruses: biology, therapy, and immunoprophylaxis., 1292-1305 (2007).
37 Khanna, R. & Burrows, S. R. Role of cytotoxic T lymphocytes in Epstein-Barr virus-associated diseases. Annu.Rev.Microbiol.2000.;54.:19.-48. 54:19-48., 19-48 (2000).
38 Rooney, C. M. et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 345, 9-13, doi:S0140-6736(95)91150-2 [pii] (1995).
39 Lin, C. L. et al. Immunization with Epstein-Barr Virus (EBV) peptide-pulsed dendritic cells induces functional CD8+ T-cell immunity and may lead to tumor regression in patients with EBV-positive nasopharyngeal carcinoma. Cancer Res 62, 6952-6958 (2002).
40 Smith, C. et al. Pre-emptive and therapeutic adoptive immunotherapy for nasopharyngeal carcinoma: Phenotype and effector function of T cells impact on clinical response. Oncoimmunology 6, e1273311, doi:10.1080/2162402X.2016.1273311 (2017).
41 Pender, M. P. et al. Epstein-Barr virus-specific T cell therapy for progressive multiple sclerosis. JCI Insight 3, doi:10.1172/jci.insight.124714 (2018).
42 Steinbuck, M. P. et al. A lymph node-targeted Amphiphile vaccine induces potent cellular and humoral immunity to SARS-CoV-2. Sci Adv 7, doi:10.1126/sciadv.abe5819 (2021).
43 Moynihan, K. D. et al. Enhancement of Peptide Vaccine Immunogenicity by Increasing Lymphatic Drainage and Boosting Serum Stability. Cancer Immunol Res 6, 1025-1038, doi:10.1158/2326-6066.CIR-17-0607 (2018).
44 Gaya, M. et al. Host response. Inflammation-induced disruption of SCS macrophages impairs B cell responses to secondary infection. Science 347, 667-672, doi:10.1126/science.aaa1300 (2015).
45 Lisk, C. et al. CD169+ Subcapsular Macrophage Role in Antigen Adjuvant Activity. Front Immunol 12, 624197, doi:10.3389/fimmu.2021.624197 (2021).
46 Schudel, A., Francis, D. M. & Thomas, S. N. Material design for lymph node drug delivery. Nat Rev Mater 4, 415-428, doi:10.1038/s41578-019-0110-7 (2019).
47 Nikiforow, S., Bottomly, K. & Miller, G. CD4+ T-cell effectors inhibit Epstein-Barr virus-induced B-cell proliferation. J Virol 75, 3740-3752, doi:10.1128/JVI.75.8.3740-3752.2001 (2001).
48 Panikkar, A. et al. Impaired Epstein-Barr Virus-Specific Neutralizing Antibody Response during Acute Infectious Mononucleosis Is Coincident with Global B-Cell Dysfunction. J Virol 89, 9137-9141, doi:10.1128/JVI.01293-15 (2015).
49 Jackman, W. T., Mann, K. A., Hoffmann, H. J. & Spaete, R. R. Expression of Epstein-Barr virus gp350 as a single chain glycoprotein for an EBV subunit vaccine. Vaccine 17, 660-668 (1999).
50 Bu, W. et al. Kinetics of Epstein-Barr Virus (EBV) Neutralizing and Virus-Specific Antibodies after Primary Infection with EBV. Clin Vaccine Immunol 23, 363-369, doi:10.1128/CVI.00674-15 (2016).
51 Wei, C. J. et al. A bivalent Epstein-Barr virus vaccine induces neutralizing antibodies that block infection and confer immunity in humanized mice. Science translational medicine 14, eabf3685, doi:10.1126/scitranslmed.abf3685 (2022).
52 Bollard, C. M., Kuehnle, I., Leen, A., Rooney, C. M. & Heslop, H. E. Adoptive immunotherapy for posttransplantation viral infections. Biol.Blood Marrow Transplant. 10, 143-155 (2004).
53 Gottschalk, S., Heslop, H. E. & Rooney, C. M. Adoptive immunotherapy for EBV-associated malignancies. Leuk Lymphoma 46, 1-10, doi:X6NJBGGNJEVVJBYN [pii]
10.1080/10428190400002202 (2005).
54 Pender, M. P. et al. Epstein-Barr virus-specific adoptive immunotherapy for progressive multiple sclerosis. Multiple sclerosis 20, 1541-1544, doi:10.1177/1352458514521888 (2014).
55 Dasari, V., Smith, C., Schuessler, A., Zhong, J. & Khanna, R. Induction of innate immune signatures following polyepitope protein-glycoprotein B-TLR4&9 agonist immunization generates multifunctional CMV-specific cellular and humoral immunity. Human vaccines & immunotherapeutics 10, 1064-1077 (2014).
56 Szakonyi, G. et al. Structure of the Epstein-Barr virus major envelope glycoprotein. Nat Struct Mol Biol 13, 996-1001, doi:10.1038/nsmb1161 (2006).
57 Boucherma, R. et al. HLA-A*01:03, HLA-A*24:02, HLA-B*08:01, HLA-B*27:05, HLA-B*35:01, HLA-B*44:02, and HLA-C*07:01 monochain transgenic/H-2 class I null mice: novel versatile preclinical models of human T cell responses. J Immunol 191, 583-593, doi:10.4049/jimmunol.1300483 (2013).