[1] Jones, R.D., Jampani, H.B., Newman, J.L., et al., Triclosan: a review of effectiveness and safety in health care settings. Am J Infect Control, 2000. 28(2): 184-196.
[2] Reiss, R., Mackay, N., Habig, C., et al., An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States. Environ Toxicol Chem, 2002. 21(11): 2483-2492.
[3] Kumar, K.S., Priya, S.M., Peck, A.M., et al., Mass loadings of triclosan and triclocarbon from four wastewater treatment plants to three rivers and landfill in Savannah, Georgia, USA. Arch Environ Contam Toxicol, 2010. 58(2): 275-285.
[4] Li, X., Ying, G.G., Su, H.C., et al., Simultaneous determination and assessment of 4-nonylphenol, bisphenol A and triclosan in tap water, bottled water and baby bottles. Environ Int, 2010. 36(6): 557-562.
[5] Peng, X., Yu, Y., Tang, C., et al., Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Sci Total Environ, 2008. 397(1-3): 158-166.
[6] Coogan, M.A., Edziyie, R.E., La Point, T.W., et al., Algal bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream. Chemosphere, 2007. 67(10): 1911-1918.
[7] Hovander, L., Malmberg, T., Athanasiadou, M., et al., Identification of hydroxylated PCB metabolites and other phenolic halogenated pollutants in human blood plasma. Arch Environ Contam Toxicol, 2002. 42(1): 105-117.
[8] Adolfsson-Erici, M., Pettersson, M., Parkkonen, J., et al., Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere, 2002. 46(9-10): 1485-1489.
[9] Wang, X., Ouyang, F., Feng, L., et al., Maternal Urinary Triclosan Concentration in Relation to Maternal and Neonatal Thyroid Hormone Levels: A Prospective Study. Environ Health Perspect, 2017. 125(6): 067017.
[10] Berger, K., Gunier, R.B., Chevrier, J., et al., Associations of maternal exposure to triclosan, parabens, and other phenols with prenatal maternal and neonatal thyroid hormone levels. Environ Res, 2018. 165: 379-386.
[11] Patrícia I. S. Pinto, E.M.G., Deborah M. Power Triclosan interferes with the thyroid axis in the zebrafish (Danio rerio). Toxicology Research, 2013.
[12] Schnitzler, J.G., Frederich, B., Dussenne, M., et al., Triclosan exposure results in alterations of thyroid hormone status and retarded early development and metamorphosis in Cyprinodon variegatus. Aquat Toxicol, 2016. 181: 1-10.
[13] Wendl, T., Lun, K., Mione, M., et al., Pax2.1 is required for the development of thyroid follicles in zebrafish. Development, 2002. 129(15): 3751-3760.
[14] Oliveira, R., Domingues, I., Koppe Grisolia, C., et al., Effects of triclosan on zebrafish early-life stages and adults. Environ Sci Pollut Res Int, 2009. 16(6): 679-688.
[15] Goldsmith, P., Zebrafish as a pharmacological tool: the how, why and when. Curr Opin Pharmacol, 2004. 4(5): 504-512.
[16] Lantz-McPeak, S., Guo, X., Cuevas, E., et al., Developmental toxicity assay using high content screening of zebrafish embryos. J Appl Toxicol, 2015. 35(3): 261-272.
[17] Campion, E.M., Loughran, S.T. and Walls, D., Protein Quantitation and Analysis of Purity. Methods Mol Biol, 2017. 1485: 225-255.
[18] Patino, R., Wainscott, M.R., Cruz-Li, E.I., et al., Effects of ammonium perchlorate on the reproductive performance and thyroid follicle histology of zebrafish. Environ Toxicol Chem, 2003. 22(5): 1115-1121.
[19] Liu, F.J., Wang, J.S. and Theodorakis, C.W., Thyrotoxicity of sodium arsenate, sodium perchlorate, and their mixture in zebrafish Danio rerio. Environ Sci Technol, 2006. 40(10): 3429-3436.
[20] Howe, K., Clark, M.D., Torroja, C.F., et al., The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013. 496(7446): 498-503.
[21] Liu, Y., Wang, J., Fang, X., et al., The thyroid-disrupting effects of long-term perfluorononanoate exposure on zebrafish (Danio rerio). Ecotoxicology, 2011. 20(1): 47-55.
[22] Elsalini, O.A., von Gartzen, J., Cramer, M., et al., Zebrafish hhex, nk2.1a, and pax2.1 regulate thyroid growth and differentiation downstream of Nodal-dependent transcription factors. Dev Biol, 2003. 263(1): 67-80.
[23] Chang, J., Wang, M., Gui, W., et al., Changes in thyroid hormone levels during zebrafish development. Zoolog Sci, 2012. 29(3): 181-184.
[24] Fujita, H., Functional morphology of the thyroid. Int Rev Cytol, 1988. 113: 145-185.
[25] Fujita, H., [On the functional morphology of the thyroid gland]. Kaibogaku Zasshi, 1991. 66(3): 145-170.
[26] Erenberg, A., Phelps, D.L., Lam, R., et al., Total and free thyroid hormone concentrations in the neonatal period. Pediatrics, 1974. 53(2): 211-216.
[27] Garland, J.T., Endocrine Disorders: A Guide to Diagnosis. Journal of the American Medical Association, 1984. 252(19): 2771-2771.
[28] Crane, H.M., Pickford, D.B., Hutchinson, T.H., et al., Developmental changes of thyroid hormones in the fathead minnow, Pimephales promelas. Gen Comp Endocrinol, 2004. 139(1): 55-60.
[29] Liu, Z., Li, D., Hu, Q., et al., Effects of exposure to microcystin-LR at environmentally relevant concentrations on the metabolism of thyroid hormones in adult zebrafish (Danio rerio). Toxicon, 2016. 124: 15-25.
[30] Tang, T., Yang, Y., Chen, Y., et al., Thyroid Disruption in Zebrafish Larvae by Short-Term Exposure to Bisphenol AF. Int J Environ Res Public Health, 2015. 12(10): 13069-13084.
[31] YAMANO, K., The role of thyroid hormone in fish development with reference to aquaculture. JARQ, 2005. 39(3): 161-168.
[32] Yang, X., Xie, J., Wu, T., et al., Hepatic and muscle expression of thyroid hormone receptors in association with body and muscle growth in large yellow croaker, Pseudosciaena crocea (Richardson). Gen Comp Endocrinol, 2007. 151(2): 163-171.
[33] Dann, A.B. and Hontela, A., Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol, 2011. 31(4): 285-311.
[34] OSHA. A guide to the globally harmonized system of classification and labeling of chemicals (GHS). https:// www.osha.gov/dsg/hazcom/ghs.html#3.3, accessed January 31, 2014. . 2014.
[35] Orvos, D.R., Versteeg, D.J., Inauen, J., et al., Aquatic toxicity of triclosan. Environ Toxicol Chem, 2002. 21(7): 1338-1349.
[36] James, M.O., Li, W., Summerlot, D.P., et al., Triclosan is a potent inhibitor of estradiol and estrone sulfonation in sheep placenta. Environ Int, 2010. 36(8): 942-949.
[37] Zhang, P., Yang, M., Zeng, L., et al., P38/TRHr-Dependent Regulation of TPO in Thyroid Cells Contributes to the Hypothyroidism of Triclosan-Treated Rats. Cell Physiol Biochem, 2018. 45(4): 1303-1315.
[38] Hirota, R., Ohya, Y., Yamamoto-Hanada, K., et al., Triclosan-induced Alteration of Gut Microbiome and Aggravation of Asthmatic Airway Response in Aeroallergen-sensitized mice. Allergy, 2018.
[39] Veldhoen, N., Skirrow, R.C., Osachoff, H., et al., The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquat Toxicol, 2006. 80(3): 217-227.
[40] Fort, D.J., Rogers, R.L., Gorsuch, J.W., et al., Triclosan and anuran metamorphosis: no effect on thyroid-mediated metamorphosis in Xenopus laevis. Toxicol Sci, 2010. 113(2): 392-400.
[41] Hinther, A., Bromba, C.M., Wulff, J.E., et al., Effects of triclocarban, triclosan, and methyl triclosan on thyroid hormone action and stress in frog and mammalian culture systems. Environ Sci Technol, 2011. 45(12): 5395-5402.
[42] Paul, K.B., Hedge, J.M., DeVito, M.J., et al., Short-term exposure to triclosan decreases thyroxine in vivo via upregulation of hepatic catabolism in Young Long-Evans rats. Toxicol Sci, 2010. 113(2): 367-379.
[43] Zorrilla, L.M., Gibson, E.K., Jeffay, S.C., et al., The effects of triclosan on puberty and thyroid hormones in male Wistar rats. Toxicol Sci, 2009. 107(1): 56-64.
[44] Crofton, K.M., Paul, K.B., Devito, M.J., et al., Short-term in vivo exposure to the water contaminant triclosan: Evidence for disruption of thyroxine. Environ Toxicol Pharmacol, 2007. 24(2): 194-197.
[45] Stoker, T.E., Gibson, E.K. and Zorrilla, L.M., Triclosan exposure modulates estrogen-dependent responses in the female wistar rat. Toxicol Sci, 2010. 117(1): 45-53.
[46] Paul, K.B., Hedge, J.M., Bansal, R., et al., Developmental triclosan exposure decreases maternal, fetal, and early neonatal thyroxine: a dynamic and kinetic evaluation of a putative mode-of-action. Toxicology, 2012. 300(1-2): 31-45.
[47] Paul, K.B., Hedge, J.M., Devito, M.J., et al., Developmental triclosan exposure decreases maternal and neonatal thyroxine in rats. Environ Toxicol Chem, 2010. 29(12): 2840-2844.
[48] Stenzel, A., Wirt, H., Patten, A., et al., Larval exposure to environmentally relevant concentrations of triclosan impairs metamorphosis and reproductive fitness in zebrafish. Reprod Toxicol, 2019. 87: 79-86.
[49] Wu, Y., Beland, F.A. and Fang, J.L., Effect of triclosan, triclocarban, 2,2',4,4'-tetrabromodiphenyl ether, and bisphenol A on the iodide uptake, thyroid peroxidase activity, and expression of genes involved in thyroid hormone synthesis. Toxicol In Vitro, 2016. 32: 310-319.
[50] Zhou, Z., Yang, J. and Chan, K.M., Toxic effects of triclosan on a zebrafish (Danio rerio) liver cell line, ZFL. Aquat Toxicol, 2017. 191: 175-188.
[51] Schuur, A.G., Legger, F.F., van Meeteren, M.E., et al., In vitro inhibition of thyroid hormone sulfation by hydroxylated metabolites of halogenated aromatic hydrocarbons. Chem Res Toxicol, 1998. 11(9): 1075-1081.
[52] Wang, L.Q., Falany, C.N. and James, M.O., Triclosan as a substrate and inhibitor of 3'-phosphoadenosine 5'-phosphosulfate-sulfotransferase and UDP-glucuronosyl transferase in human liver fractions. Drug Metab Dispos, 2004. 32(10): 1162-1169.
[53] Opitz, R., Maquet, E., Zoenen, M., et al., TSH receptor function is required for normal thyroid differentiation in zebrafish. Mol Endocrinol, 2011. 25(9): 1579-1599.
[54] Alt, B., Reibe, S., Feitosa, N.M., et al., Analysis of origin and growth of the thyroid gland in zebrafish. Dev Dyn, 2006. 235(7): 1872-1883.