[1] M.S. Heydari, H.R. Baharvandi,K. Dolatkhah, Effect of TiO2 nanoparticles on the pressureless sintering of B4C-TiB2 nanocomposites. Int. J. Refract. Met. H. 51(2015) 6-13.
[2] Q. He, J. Xie, A. Wang, C. Liu, T. Tian, L. Hu, C. Yi, Z. Zhang, H. Wang, W. Wang, Z. Fu, Effects of boron content on the microstructures and mechanical properties of reactive hot-pressed BxC-TiB2-SiC composites. Ceram. Int. 45(2019) 19650-19657.
[3] F. Thévenot, Boron carbide—A comprehensive review. J. Eur. Ceram. Soc. 6(1990) 205-225.
[4] V. Domnich, S. Reynaud, R.A. Haber, M. Chhowalla, Boron Carbide: Structure, Properties, and Stability under Stress. J. Am. Ceram. Soc. 94(2011) 3605-3628.
[5] D.O. Moskovskikh, K.A. Paramonov, A.A. Nepapushev, N.F. Shkodich, A.S. Mukasyan, Bulk boron carbide nanostructured ceramics by reactive spark plasma sintering. Ceram. Int. 43(2017) 8190-8194.
[6] R.F. Speyer,H. Lee, Advances in pressureless densification of boron carbide. J. Mater. Sci. 39(2004) 6017-6021.
[7] S. Yamada, K. Hirao, Y. Yamauchi, S. Kanzaki, High strength B4C–TiB2 composites fabricated by reaction hot-pressing. J. Eur. Ceram. Soc. 23(2003) 1123-1130.
[8] X. Yue, S. Zhao, P. Lü, Q. Chang, H. Ru, Synthesis and properties of hot pressed B4C–TiB2 ceramic composite. Materials Science and Engineering: A 527(2010) 7215-7219.
[9] S.G. Huang, K. Vanmeensel, O. Van der Biest, J. Vleugels, In situ synthesis and densification of submicrometer-grained B4C–TiB2 composites by pulsed electric current sintering. J. Eur. Ceram. Soc. 31(2011) 637-644.
[10] Y. WANG, H. PENG, F. YE, Y. ZHOU, Effect of TiB2 content on microstructure and mechanical properties of in-situ fabricated TiB2/B4C composites. T. Nonferr. Metal. Soc. 21(2011) s369-s373.
[11] T.S. Srivatsan, G. Guruprasad, D. Black, R. Radhakrishnan, T.S. Sudarshan, Influence of TiB2 content on microstructure and hardness of TiB2–B4C composite. Powder Technol. 159(2005) 161-167.
[12] H. Cui, W. Liu, L. Cao, Q. Song, J. Tian, F. Teng, J. Wang, Effects of B4C particle size on pore structures of porous TiB2–TiC by reaction synthesis. J. Eur. Ceram. Soc. 35(2015) 3381-3388.
[13] H. Wang, S. Sun, D. Wang, G. Tu, Characterization of the structure of TiB2/TiC composites prepared via mechanical alloying and subsequent pressureless sintering. Powder Technol. 217(2012) 340-346.
[14] O. Popov, V. Vishnyakov, S. Chornobuk, I. Totsky, I. Plyushchay, Mechanisms of TiB2 and graphite nucleation during TiC–B4C high temperature interaction. Ceram. Int. 45(2019) 16740-16747.
[15] X. Zhang, Z. Zhang, Y. Liu, A. Wang, S. Tian, W. Wang, J. Wang, High-performance B4C–TiB2–SiC composites with tuneable properties fabricated by reactive hot pressing. J. Eur. Ceram. Soc. 39(2019) 2995-3002.
[16] S.S. Rehman, W. Ji, S.A. Khan, Z. Fu, F. Zhang, Microstructure and mechanical properties of B4C densified by spark plasma sintering with Si as a sintering aid. Ceram. Int. 41(2015) 1903-1906.