1. Zhang, C., Ottenheim, C., Weingarten, M. & Ji, L. Microbial Utilization of Next-Generation Feedstocks for the Biomanufacturing of Value-Added Chemicals and Food Ingredients. Front. Bioeng. Biotechnol. 10 (2022).
2. Chou, A., Lee, S.H., Zhu, F., Clomburg, J.M. & Gonzalez, R. An orthogonal metabolic framework for one-carbon utilization. Nat. Metab. 3, 1385-1399 (2021).
3. Siegel, J.B. et al. Computational protein design enables a novel one-carbon assimilation pathway. PNAS 112, 3704-3709 (2015).
4. Güner, S., Wegat, V., Pick, A. & Sieber, V. Design of a synthetic enzyme cascade for the in vitro fixation of a C 1 carbon source to a functional C 4 sugar. Green Chem. 23, 6583-6590 (2021).
5. Patti, A. & Acierno, D. Towards the Sustainability of the Plastic Industry through Biopolymers: Properties and Potential Applications to the Textiles World. Polymers 14, 692 (2022).
6. Gädda, T.M. et al. The industrial potential of bio-based glycolic acid and polyglycolic acid: Short survey. Appita J. 67 (2014).
7. Salusjärvi, L., Havukainen, S., Koivistoinen, O. & Toivari, M. Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives. Appl. Microbiol. Biotechnol. 103, 2525-2535 (2019).
8. He, Y.-C., Xu, J.-H., Su, J.-H. & Zhou, L. Bioproduction of glycolic acid from glycolonitrile with a new bacterial isolate of Alcaligenes sp. ECU0401. Appl. Biochem. Biotechnol. 160, 1428-1440 (2010).
9. Wei, G. et al. High cell density fermentation of Gluconobacter oxydans DSM 2003 for glycolic acid production. JIMB 36, 1029-1034 (2009).
10. Lachaux, C. et al. A new synthetic pathway for the bioproduction of glycolic acid from lignocellulosic sugars aimed at maximal carbon conservation. Front. Bioeng. Biotechnol. 7, 359 (2019).
11. Song, J.-W., Seo, J.-H., Oh, D.-K., Bornscheuer, U.T. & Park, J.-B. Design and engineering of whole-cell biocatalytic cascades for the valorization of fatty acids. Catal. Sci. Technol. 10, 46-64 (2020).
12. Chou, A., Clomburg, J.M., Qian, S. & Gonzalez, R. 2-Hydroxyacyl-CoA lyase catalyzes acyloin condensation for one-carbon bioconversion. Nat. Chem. Biol. 15, 900-906 (2019).
13. Singer, S.W. A new path for one-carbon conversion. Nat. Metab. 3, 1286-1287 (2021).
14. Lu, X. et al. Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design. Nat. Commun. 10, 1-10 (2019).
15. Jo, H.-J. et al. Glyoxylate carboligase-based whole-cell biotransformation of formaldehyde into ethylene glycol via glycolaldehyde. Green Chem. 24, 218-226 (2022).
16. Hou, M. et al. Genetic editing of the virulence gene of Escherichia coli using the CRISPR system. PeerJ 8, e8881 (2020).
17. Jiang, Y. et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol. 81, 2506-2514 (2015).
18. Bassalo, M.C. et al. Rapid and efficient one-step metabolic pathway integration in E. coli. ACS Synth. Biol. 5, 561-568 (2016).
19. Nash, T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 55, 416-421 (1953).
20. Poust, S. et al. Mechanistic analysis of an engineered enzyme that catalyzes the formose reaction. ChemBioChem 16, 1950-1954 (2015).
21. Güner, S., Wegat, V., Pick, A. & Sieber, V. Design of a synthetic enzyme cascade for the in vitro fixation of a C1 carbon source to a functional C4 sugar. Green Chem. 23, 6583-6590 (2021).
22. Baldoma, L. & Aguilar, J. Involvement of lactaldehyde dehydrogenase in several metabolic pathways of Escherichia coli K12. J. Biol. Chem. 262, 13991-13996 (1987).
23. Son, H.F., Park, S., Yoo, T.H., Jung, G.Y. & Kim, K.-J. Structural insights into the production of 3-hydroxypropionic acid by aldehyde dehydrogenase from Azospirillum brasilense. Sci. Rep. 7, 1-10 (2017).
24. Cabulong, R.B. et al. Engineering Escherichia coli for glycolic acid production from D-xylose through the Dahms pathway and glyoxylate bypass. Appl. Microbiol. Biotechnol. 102, 2179-2189 (2018).
25. Klein, V.J., Irla, M., Gil López, M., Brautaset, T. & Fernandes Brito, L. Unravelling Formaldehyde Metabolism in Bacteria: Road towards Synthetic Methylotrophy. Microorganisms 10, 220 (2022).
26. Gonzalez, C.F. et al. Molecular basis of formaldehyde detoxification: characterization of two S-formylglutathione hydrolases from Escherichia coli, FrmB and YeiG. J. Biol. Chem. 281, 14514-14522 (2006).
27. Núñez, M.F., Pellicer, M.T., Badı́a, J., Aguilar, J. & Baldomà, L. The gene yghK linked to the glc operon of Escherichia coli encodes a permease for glycolate that is structurally and functionally similar to L-lactate permease. Microbiology 147, 1069-1077 (2001).
28. Woo, J.-M., Kim, J.-W., Song, J.-W., Blank, L.M. & Park, J.-B. Activation of the glutamic acid-dependent acid resistance system in Escherichia coli BL21 (DE3) leads to increase of the fatty acid biotransformation activity. PLoS One 11, e0163265 (2016).
29. Zhao, L. et al. A comparative study on the genomes, transcriptomes, and metabolic properties of Escherichia coli strains Nissle 1917, BL21 (DE3), and MG1655. Engineering Microbiology 2, 100012 (2022).
30. Yoon, S.H. et al. Comparative multi-omics systems analysis of Escherichia coli strains B and K-12. Genome Biol. 13, 1-13 (2012).