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Abstract
Since Sertoli cells (SCs) play an important role in providing energy for spermatogenesis, the present study
was aimed to investigate the effects of maternal exposure to plasticizer Dibutyl phthalate (DBP) on onset
of spermatogenesis in male offspring through metabolism pathway as well as the underlying molecular
mechanism. By detecting the level of the glucose metabolism in SCs, we found that monobutyl phthalate
(MBP, the active metabolite of DBP) promoted cellular glycolysis accompanied by GLUT1, GLUT3, LDHA
and MCT4 upregulated, leading to increased lactate which was provided spermatogenesis as energy
substrate. Further mechanism research revealed that DBP/MBP increased fatty acid uptake and ATP
production by promoting the expression of CD36, so as to accelerate their own maturity. Therefore, our
�ndings provided new perspective at glycolipid metabolism to explain prenatal DBP exposure leading to
earlier onset of spermatogenesis in male offspring mice.

1. Introduction
Dibutyl phthalate (DBP) is an endocrine-disrupting chemical that has the potential to cause adverse
effects on male reproduction and development (Kavlock et al. 2002). As a typical plasticizer, DBP was
widely used in cosmetics, children’s toys, food packaging and medical devices to increase the �exibility of
plastics (Kavlock et al. 2002; Pan et al. 2006). Due to the relatively weak interactions between DBP and
plastics through hydrogen bonding or van der Waals’s forces, DBP has been widely detected in the
environment (Heudorf et al. 2007; Lottrup et al. 2006; Swan 2008). In some areas, the concentration of
DBP in the environment has reached a hazardous level. For example, DBP levels of up to 55.7 mg/kg
have been detected in South Xinjiang (Lü et al. 2018). Recent research found that the daily DBP exposure
of residents in Beijing area was up to 81.8 µg/kg (Zhang et al. 2020). Furthermore, in some occasions,
such as workers in the plastics manufacturing industry and infusion patients, DBP exposure can be as
high as 10–20 mg/kg/day (Hauser et al. 2004; Koch et al. 2012; Rael et al. 2009; Seckin et al. 2009). In
addition, DBP can be detected in pregnant women’s serum, urine, amniotic �uid, and fetal cord blood,
indicating that DBP can cross the placental barrier (Lien et al. 2015; Watkins et al. 2016). Our previous
study has been found that maternal exposure to 50 mg/kg/day DBP induced earlier puberty and
accelerated spermatogenesis (Ma et al. 2021), but the underlying molecular mechanism still needs to be
further explored.

Spermatogenesis is an intricate process that results from multiple and complex interactions between
various testicular cells (Alves et al. 2012). Sertoli cells (SCs) are mainly responsible for providing
nutritional and structural support for the development of germ cells (Rato et al. 2012b; Svingen and
Koopman 2013). The utilization of glucose in spermatogenesis is extremely limited, and the energy
substrate is mainly lactate produced by SCs through glycolysis (Rato et al. 2012b). The glucose is
transported into SCs by glucose transporters (GLUTs), and then is convert into pyruvate. Approximately
75% of pyruvate is catalyzed by lactate dehydrogenase (LDH) to produce lactate which is transported by
monocarboxylic acid transporters (MCTs) to germ cell as energy metabolic substrate (Grootegoed et al.
1986; Oliveira et al. 2011; Rato et al. 2012a). Once the production of lactate secreted by SCs decrease, it
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will disrupt the development of germ cells and affect male reproductive function (Rato et al. 2012a).
However, it is not known whether DBP accelerates spermatogenesis by affecting glycolysis of SCs.

During spermatogenesis, approximately 75% of the developing spermatogenic cells will undergo
physiological apoptosis (Huckins 1978; Johnson et al. 1983; Kubota and Brinster 2018; Oakberg 1956). In
the �nal stage of spermatogenesis, the cytoplasm of the elongated spermatids are shed to form residual
bodies (Kerr and de Kretser 1974). In this process, fatty acid (FA) transporter CD36 in SCs is transported
from the cytoplasm to the plasma membrane to phagocytize apoptotic spermatogenic cells and residual
bodies form lipid droplets (LDs), which is the key to maintaining the normal spermatogenesis (Chemes
1986; Gillot et al. 2005; Miething 1992; Pineau et al. 1991). Although glucose is a common substrate of
energy, it is not the main metabolite used for ATP synthesis in SCs which require high energy levels for
growth and functional normally (Riera et al. 2009). Xiong et al. report that SCs preferentially use lipids for
β-oxidation as the main metabolic pathway for SCs to produce energy (Xiong et al. 2009). Our previous
study showed that maternal exposure to 50 mg/kg/day DBP promotes juvenile SCs proliferation (Ma et
al. 2020a). However, whether and how lipid metabolism is involved in DBP accelerating spermatogenesis
are unclear.

In this study, from the perspective of maternal exposure of DBP to interfere with glucose and lipid
metabolism in SCs, we studied the molecular mechanism of early spermatogenesis in male offspring.
This provides a theoretical basis for explaining that environmental endocrine disruptors interfere with the
onset of puberty by affecting SCs metabolism.

2. Methods

2.1. Animals and treatment
Nine-week-old male (n = 12) and female (n = 24) BALB/c mice (speci�c pathogen-free, SPF) were
purchased from Qinglongshan animal breeding farm. Time-mated females that were observed to have a
copulatory plug were considered to be at gestation day (GD) 0.5. After mating, pregnant females were
randomized into four groups (n = 6 for each). Pregnant females were treated from GD 12.5 until birth with
0 (control), 50, 250, and 500 mg/kg/day DBP in 1 mL/kg corn oil administered daily by oral gavage. The
22-day-old males were euthanized by CO2 asphyxiation. The testes were carefully removed for various
examinations.

All experimental protocols were approved by the Animal Care and Use Committee of Nanjing University
under the animal protocol number SYXK (Su) 2009-0017.

2.2. Reagents and cell culture
Fetal bovine serum (FBS), Triton® X-100, DMEM-F12 and MBP were purchased from Sigma-Aldrich Inc.
(St. Louis, MO, USA). MBP (2.2224 g) was dissolved in 1 mL of DMSO to prepare a stock solution (10 M).
The antibodies used in this study are listed in Table S1. TM4 cells were cultured in DMEM/F12 containing
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10% FBS and 1% penicillinstreptomycin with a 5% CO2 atmosphere in a humidi�ed incubator at 37°C.
TM4 cell lines were obtained from the American Type Culture Collection (Manassas, VA, USA). Primary
SCs were prepared from three-week-old mice, as described previously (Ma et al. 2020b). Cells in the
supernatant were collected and cultured (in DMEM-F12 medium containing 10% FBS) overnight. SCs that
adhere to the bottom are obtained and irregularly shaped, while GCs are not attached and can be easily
collected for inducing spontaneous apoptosis by culturing for 2 days based on a previous description
(Xiong et al. 2009). Two days thereafter, cultures were subjected to a hypotonic treatment with 20 mM
Tris (pH 7.4) for 3 min to lyse residual GCs. SCs were washed twice with PBS and then incubated in
DMEM-F12.

2.3. Oligonucleotide Transfection
The small interfering RNA (siRNA) sequences used in this study were designed and chemically
synthesized by HippoBio as: si-1 (sense: 5’-GCCAAGCUAUUGCGACAUGAUdTdT-3’; antisense: 5’-
AUCAUGUCGCAAUAGCUUGGCdTdT-3’); si-2 (sense: 5’-GGAUCUGAAAUCGACCUUAAAdTdT-3’; antisense: 5’-
UUUAAGGUCGAUUUCAGAUCCdTdT-3’); si-3 (sense: 5’- GCAGGUCAACAUAUUGGUCAAdTdT-3’; antisense:
5’- UUGACCAAUAUGUUGACCUGCdTdT-3’). Transfection was performed using Lipofectamine 2000
(Invitrogen) according to manufacturer’s instructions.

2.4. Quantitative real-time PCR (qRT-PCR)
Analyses of qRT-PCR were performed as previously described (Chen et al. 2016). Total RNAs from cells or
tissues were extracted using Trizol regent (Invitrogen, Carlsbad, CA. USA) and 1 µg mRNA was then
reversed to cDNA using 5x HiScript Q RT SuperMix (Vazyme, Nanjing, China). Oligonucleotide primer
sequences were listed in Table S2 and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an
internal control. All analyses were performed using the 2−ΔΔCT method.

2.5. Western blotting
Western blotting analyses were executed as previously described (Chen et al. 2017). Speci�c antibody
immunological complexes such as PPARγ, CD36, GLUT1, GLUT3, MCT4, LDHA, β-catenin, and GAPDH,
were observed by enhanced chemiluminescence.

2.6. Immuno�uorescent Staining
Immuno�uorescence analyses of testis tissues or TM4 cells were performed as previously reported (Chen
et al. 2016). The following primary antibodies were employed: mouse anti-CD36, mouse anti-Vimentin,
mouse anti-GLUT1, rabbit anti-LDHA, rabbit anti-GLUT3, rabbit anti-SOX9, mouse anti-MCT4. The
samples were subsequently treated with primary antibodies incubated at 4℃ overnight, followed by
incubation of �uorophore-labelled secondary antibodies (Invitrogen) for 1 h at 37℃. The images were
acquired by confocal �uorescence microscope (Olympus, Tokyo, Japan).

2.7. Lipid uptake assay
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The free FAs uptake measurement kit (ab176768; Abcam) was used to measure FAs uptake in
accordance with the manufacturer's protocol. In short, cells were seeded in a 96-well plate at a density of
50,000 cells per well 1 day before the measurement, and these cells were deprived of serum for 1 hour.
Next, cells were incubated with TF2-C12 FAs at room temperature, and �uorescence (excitation: 485 nm,
emission: 515 nm) was measured using a multifunctional �uorescence microplate reader (Molecular
Devices, USA).

2.8. Triglycerides (TG) measurement
TG content was measured by TG detection kit (Jianchen, Nanjing). Brie�y, cells cultured in 6-well plates
were washed twice with phosphate-buffered saline (PBS) at room temperature. SCs were harvested by
treated with 0.05% trypsin. Cells collected by centrifugation at 1000 rpm for 10 min were resuspended in
PBS pH 7.4 and homogenized by ultrasonic irradiation. TG was measured by a routinely used method
based on the colorimetric determination of the glycerol released upon the action of lipoproteinlipase on
the TG. Results were expressed as millimoles TG/grams protein.

2.9. Glucose consumption evaluation
Glucose consumption by TM4 cells was measured by glucose detection kit (robio, Shanghai) according
to the manufacturer's protocol.

2.10. Lactate determination
Lactate detection kit (Cablebridge Biotechnology, Shanghai) was purchased to examine lactate
production in TM4 cells according to the manufacturer's protocol. Conditioned media obtained from cells
cultured in 6-well plates were used to determine lactate production. Lactate was measured by a standard
method involving the conversion of NAD + to NADH as described in Regueira et al (Regueira et al. 2014).

2.11. Cellular ATP measurement
The ATP levels in cells were detected using a commercial ATP assay kit (Beyotime Biotechnology)
according to the protocol provided by the manufacturer. Brie�y, after processing cells under different
conditions, cells were lysed in lysis buffer, and centrifuged at 12000 g for 5 min at 4℃. The supernatant
was used to detect the ATP level using a microplate reader (Beckman Coulter).

2.12. Flow cytometry
TM4 cells were processed for analysis of apoptosis and cell cycle using a FACScallbur �ow cytometer
(BD Biosciences). Cell apoptosis was analyzed by an Annexin V-FITC and PI staining kit (Vazyme,
Nanjing, China) according to manufacturer’s instructions. For cell cycle analysis, cells were harvested and
�xed in 70% (v/v) ethanol at 4℃ and then wash in PBS. All cells were stained with PI solution (50 µg/ml
in PBS) (BD Biosciences) for 15 min in the dark, and the DNA content of each cell was detected by
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FACScallbur �ow cytometer (BD Biosciences). For cell surface staining, cells were harvested by
trypsinization and washed in PBS. Cells were stained with anti-CD36-PE antibody for 30 min in PBS with
1% BSA and analyzed on FACScallbur �ow cytometer (BD Biosciences).

2.13. Measurement of oxygen consumption rate and
extracellular acidi�cation rate
Cellular oxygen consumption rate (OCR) and extracellular acidi�cation rate (ECAR) were used to monitor
exogenous fatty acid oxidation (FAO) and glycolysis in real time when the appropriate substrates were
added to or included in assay medium as indicated in the relevant experiments. Brie�y, TM4 cells after
indicated treatment were transferred on to XF microplates (5000 cells per well) in complete culture
medium for 1 day. TM4 cells were washed and equilibrated for 1 hour. To determine FAO in TM4 cells,
Mito Stress Tests were carried out using sequential injections of oligomycin (1 µM), FCCP (2 µM), and
rotenone plus antimycin A (0.5 µM). To determine glycolysis in TM4 cells, glycolysis stress test was
carried out using sequential injections of glucose (10 mM), oligomycin (1 µM), and 2-DG (50 mM). OCR
and ECAR were recorded by an Extracellular Flux Analyzer XF96 (Seahorse Bioscience). Following each
experiment, total cellular protein was determined using the Pierce BCA Protein Assay Kit (Vazyme,
Nanjing, China).

2.14. LD staining
LDs in TM4 cells were stained with Nile Red. Nile Red staining of TM4 cells was performed as previously
reported (Wang et al. 2015). Nuclei were stained with DAPI. Fluorescent signals were viewed by confocal
�uorescence microscope (Olympus, Tokyo, Japan).

2.15. Statistical Analysis
The data were analyzed for statistical with SPSS 18.0 (SPSS, Chicago, IL, USA). The Student’s t-test was
used for paired comparisons; one-way ANOVA with Duncan’s post hoc test was used to analyze the
difference between groups. A P value of less than 0.05 was considered statistically signi�cant.

3. Results

3.1. DBP/MBP promoted glucose metabolism in SCs
Our previous study has shown that maternal exposure to DBP accelerated spermatogenesis in offspring
mice on PND 22 (Ma et al. 2021). Spermatogenesis is dependent on lactate which is supplied by SCs
through glycolytic pathway. In vivo, we detected the expression of proteins (GLUT1, GLUT3, LDHA, and
MCT4) that is involved in glycolysis by immuno�uorescence. The results showed that the expression of
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GLUT3, LDHA, and MCT4 increased at a dose of 50 mg/kg/day (Fig. 1A and Fig. S1). In vitro, compared
with control group, lactate production increased signi�cantly after exposure to 0.1 mM MBP (Fig. 1B). To
further investigate the molecular mechanisms involved in lactate production, glucose uptake was
analyzed. Results found that glucose uptake increased in TM4 cells exposed to 0.1 mM MBP compared
with control group (Fig. 1C). Furthermore, 0.1 mM MBP obviously increased in glycolysis rate as well as
total glycolytic capacity and reduced the mitochondrial respiratory capacity in TM4 cells (Fig. 1D and Fig.
S2), as demonstrated by the changes in extracellular acidi�cation rate (ECAR) and mitochondrial oxygen
consumption rate (OCR), which might be maintaining redox balance for TM4 cells under toxic conditions.
Consistent with the in vivo results, MBP increased the expression of GLUT1, GLUT3, LDHA, and MCT4 in
the 0.1 mM group (Fig. 1E). A large number of studies have con�rmed that β-catenin promotes glycolysis
by regulating the expression of glycolysis related genes (Fan et al. 2018; Jiang et al. 2021). In this study,
MBP increased the expression of β-catenin (Fig. 1E). Moreover, MBP also increased the expression of β-
catenin both in the nuclei and cytoplasm of TM4 cells (Fig. 1F). The change in β-catenin expression was
also con�rmed by immuno�uorescence (Fig. S3). Overall, the results suggested the increased glycolysis
via β-catenin, the production and secretion of lactate, which may be one of the reasons for early
spermatogenesis.

3.2. MBP promoted the increase of FAs in TM4 cells
In order to explore the effect of DBP on the lipid metabolism of SCs, we �rst detected the changes in FAs
content in TM4 cells after MBP exposed. It was found that lipid droplets (LDs) accumulating in SCs in
cytoplasmic areas close to their nuclei. Furthermore, the LDs number was increased in TM4 cells after
MBP exposed (Fig. 2A). Correspondingly, we also found that the TG content of TM4 cells increased after
MBP treatment (Fig. 2B). FAs are usually in the form of LDs after participating in the synthesis of TG
(Gorga et al. 2017). Furthermore, we used qRT-PCR to detect the expression of genes involved in the
synthesis and storage of TG in cells, and found that 0.1 mM MBP promoted the expression of Plin2,
Gpat3, Gpat4, and Dgat1, but had no signi�cant effect on Plin1, Plin3, Gpat1, and Gpat2 (Fig. 2C).
Peroxisome proliferator-activated receptor γ (PPAR γ), as a ligand-activated transcription factor, affects
lipid storage in SCs by regulating the expression of genes involved in fatty acid storage, such as the
CD36, Plins, Dgat1, and Gpats (Gorga et al. 2017). In the present study, MBP induced marked enrichment
of PPAR γ in the nuclei of TM4 cells (Fig. 2D). Overall, this result suggested that MBP promoted lipid
storage of SCs by activating PPAR γ.

3.3. MBP promoted FA β-oxidation in TM4 cells
To determine whether MBP regulated FA β-oxidation, we �rst analyzed the expression of genes involved in
FA β-oxidation in SCs following MBP treatment. As shown in Fig. 3A, most of the genes involved in FA β-
oxidation were signi�cantly upregulated in SCs treated with MBP as compared with control group.
Furthermore, the basal and maximal oxygen consumption rates were signi�cantly increased in TM4 cells
after treatment with 0.1 mM MBP, indicating MBP promotes high level of FAs oxidation (Fig. 3B). Finally,
to further determine the relationship between lipid oxidation and ATP production, we measured the
production of ATP in TM4 cells after MBP exposed. The data showed that the production of ATP was
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increased in 0.1 mM MBP-treated group (Fig. 3C). Taken together, these �ndings con�rmed our
hypothesis that accumulated lipid induced by DBP/MBP promoted FA oxidation to generate more energy
for TM4 cells.

3.4. MBP promoted the uptake of exogenous FAs in TM4
cells
The sources of FAs in mammalian cells are mainly composed of the synthesis of intracellular FAs and
the uptake of exogenous FAs (Kamphorst et al. 2013). Therefore, to explore the reasons for the increase
of FAs, we measured gene levels of Fasn and Acaca, key components of the de novo FA biosynthesis.
The result showed that the expression of Fasn was inhibited in TM4 cells after exposed to 0.1 mM MBP,
whereas no changes of Acaca (Fig. 4A). Then, we measured gene levels of FATP1, FATP3, FATP4, and
CD36, key components of the FA uptake. The qRT-PCR results showed that the expression of FATP1,
FATP2, FATP3, and CD36 were increased compared with control, and the increased level of CD36 was the
most signi�cant (Fig. 4B). Furthermore, MBP treatment of TM4 cells showed markedly higher uptake of
FAs than control group (Fig. 4C). These results suggested that an increased uptake of lipids might be a
reason for the increased lipid accumulation in TM4 cells.

3.5. DBP/MBP promoted CD36 expression in SCs
As the above results found that the gene level of CD36 was the most signi�cantly increased in TM4 cells
after MBP-treated. Consist with in vitro, we also found that prenatal exposure to DBP (50 mg/kg/day)
increased the levels of CD36 in the mouse testes, as shown by qRT-PCR assay (Fig. 5A). These results
were further con�rmed by Western blot and immuno�uorescence (Fig. 5B and 5C). Because CD36 acts at
the cell surface, we con�rmed that plasma membrane localization of CD36 in TM4 cells after exposure to
0.1 mM MBP was enhanced by immuno�uorescence (Fig. 5D and 5E). These results were further
con�rmed by �ow cytometry (Fig. 5F).

3.6. CD36 increased in SCs co-cultured with apoptotic
spermatogenic cells
E�cient phagocytic clearance of apoptotic spermatogenic cells by SCs is crucial for functional mature
spermatogenesis (Dong et al. 2015). Previous study has con�rmed that CD36 plays a key role in
phagocytosis of germ cells, for constant production of mature spermatozoa (Gillot et al. 2005). In this
study, we incubated primary cultured SCs with apoptotic germ cells. The gene and protein analyses
revealed a time-dependent increase in the CD36 expression in the SCs co-cultured with apoptotic GCs
(Fig. 6A and 6B), which indicating the potential involvement of CD36 in testicular phagocytosis. To
determine whether the lipids result from engulfment of apoptotic germ cells, we examined the TG
contents during co-culture of SCs with apoptotic germ cells. The results showed that the TG contents in
SCs increased dramatically at 12 h (Fig. 6C). Long-chain acyl-CoA dehydrogenase (LCAD) is a key
enzyme that catabolizes LCFAs in the β-oxidation pathway (Xiong et al. 2009). qRT-PCR analyses
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revealed a time-dependent increase in the LCAD expression in the SCs co-cultured with apoptotic germ
cells (Fig. 6D).

3.7. CD36 affected TM4 cells growth by promoting the
uptake of exogenous FAs
To further con�rm that CD36 facilitates FAs uptake, we examined whether blocking its expression by
using small interfering RNA (siRNA) would abolish the FAs uptake in TM4 cells. qRT-PCR analysis
demonstrated that siCD36-1 was more effective in suppressing the expression of CD36 (Fig. S4), and it
was therefore selected for further studies. Function of CD36 as a lipid transporter was con�rmed by CD36
siRNA knockdown, which attenuated lipid droplet accumulation (Fig. 7A). In addition, we determined TG
content of TM4 cells with CD36 knockdown. Consistent with the above results, TG content was
dampened in TM4 cells with CD36 knockdown as compared with control group (Fig. 7B). Furthermore,
knockdown CD36 reduced the lipid uptake capacity in TM4 cells (Fig. 7C). These results suggested that
lipid uptake and accumulation in TM4 cells were mediated via CD36. Previous study has demonstrated
that SCs preferentially use the accumulated lipids as the source of fuels to produce energy for their
growth (Xiong et al. 2009). Therefore, we analyzed the changes of ATP production and growth after
knockdown of CD36 in TM4 cells. The data showed that ATP production was signi�cantly attenuated in
cells with CD36 knockdown (Fig. 7D). In addition, the results of �ow cytometry showed that cells with
CD36 knockdown increased apoptosis and decreased proliferation (Fig. 7E and 7F). We also measured
the mitochondrial oxygen consumption rates (OCR) after knockdown of CD36 in TM4 cells. As shown in
Fig. S5, CD36 knockdown showed an attenuated ATP production, markedly reduced maximal respiration
and reserve capacity compared with control group. Taken together, these data con�rmed that high levels
of lipids uptake by CD36 mediated by DBP/MBP promoted to generate more energy and affected the
growth of SCs.

4. Discussion
SCs perform a range of functions from physical support and immunoprotecting to the supplying of
nutrients and other factors in order to achieve successful spermatogenesis (Oliveira et al. 2009; Rato et
al. 2010). In addition, because of �xed number of germ cells supported by SCs, the proliferative capability
of immature SCs before puberty determines the number of mature SC, the size of the testis, and the
output of germ cells in the mature testis (Cheng et al. 2010). Our previous study found that maternal
exposure to DBP promoted the formation of testicular TJs, which provided physical support for
spermatogenesis (Ma et al. 2020b). In this study, we �rst found that DBP exposure could promote
glycolipid metabolism in SCs, on this basis, we explored the mechanism of maternal exposure to DBP
promoting the development of spermatogenic cells from the perspective of SCs metabolism.

As ‘nurse cells’, SCs are responsible for providing energy substrate lactate to developing germ cells.
Modulation of metabolic pathways in SCs is likely to be determined by multiple elements including
metabolic substrate availability and the action of hormones as well as other endogenous or exogenous
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factors that will have a synergistic contribution to the progression of spermatogenesis (Rato et al.
2012b). Although Wang Zhang and his colleagues report that DBP exposure could induce liver lipid
metabolism disorder and other hepatic toxicity through PPARα/SREBP-1c/FAS/GPAT/AMPK signal
pathway (Zhang et al. 2021), there are still few studies on the effect of DBP on cell metabolism.

Developing germ cells have speci�c metabolic requirements, and the lactate produced by SCs through
glycolysis is preferentially used as a substrate for ATP production (Robinson and Fritz 1981). SCs
produce lactate primarily from glucose, and the rate-limiting step is the membrane passage of glucose
from the extracellular space, via speci�c GLUTs (Angulo et al. 1998). Three GLUTs (GLUT1, GLUT3 and
GLUT8) have been identi�ed in SCs to date (Carosa et al. 2005; Galardo et al. 2008). However, GLUT8 is
not expected to be involved in glucose transport from the extracellular (Piroli et al. 2002). In this study, we
found that MBP promoted GLUT1 and GLUT3 expression in SCs, which was consistent with MBP
promoting glucose uptake in SCs. LDH has a crucial role in providing lactate to developing germ cells,
and LDHA is the predominantly expressed isoform in the testes(Hawtrey and Goldberg 1968). The export
of lactate from SCs by MCTs is responsible for lactate supply to germ cells (Oliveira et al. 2011; Rato et
al. 2012a). A total of 14 MCT family members have been identi�ed in tissues and cells, among which
MCT1 and MCT4 are expressed in SCs (Bonen et al. 2006; Galardo et al. 2007). MCT1 has a high a�nity
for lactate and is mainly responsible for the uptake of lactate from the extracelluar environment into cell
(Bonen 2001), while MCT4 has a low a�nity for lactate and is mainly responsible for export of lactate
into the extra-Sertoli cellular space (Bonen 2001; Galardo et al. 2007). Our study found that MBP
promoted the expression of LDHA and MCT4, indicating that MBP promoted the synthesis and secretion
of lactate in SCs. Furthermore, 0.1mM MBP decreased OCR and increased ECAR in SCs by Seahorse
analysis, con�rming the increase in glycolysis of SCs. Therefore, MBP promotes the synthesis and
secretion of lactate in SCs, which might to provide energy support for the early initiation of
spermatogenesis.

The presence of numerous LDs is characteristic in mature SCs and these LDs are assumed to constitute
the storage of FAs. Previous study showed that the inactivation of lipid metabolism-related genes in mice
could impair spermatogenesis, indicating that lipid metabolism is essential for male reproduction (Gorga
et al. 2017). SCs devour residual body and apoptotic germ cells, resulting in an increase of the lipid
contents in SCs (Oliveira et al. 2015). Xiong and collaborators show that SCs preferentially use lipid as an
energy source (Xiong et al. 2009). In our study, we found that MBP increased the content of TG and
promoted lipid metabolism in SCs, which was not dependent on the de novo synthesis in SCs, but on the
increased uptake of external FAs. CD36 has high a�nity for FAs and facilitates tissue FA uptake in
rodents and humans (Glatz et al. 2010; Hames et al. 2014). With increasing CD36 expression, we found
that the uptake of FAs, the TG content, and the ATP production was increased. Furthermore, we showed
that CD36 knockdown resulted in decreased ATP production and increased apoptosis in SCs. Therefore,
we found that MBP enhanced lipid metabolism and ATP production by promoting the expression of
CD36.
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5. Conclusions
In summary, we �rst con�rmed that DBP/MBP increased the production of lactate via glycolysis through
the expression of the key glycolytic-related proteins GLUT1, GLUT3, LDHA and MCT4, and promoted lipid
metabolism in SCs at a relatively low concentration range, which might accelerate the spermatogenesis
during puberty. Then, we found that CD36 played an important role in DBP/MBP exposure resulting in
increased lipid uptake and ATP production as well as promoting survival of SCs (Fig. 8). Therefore, our
�ndings are the �rst explain the reason why prenatal DBP exposure leads to early spermatogenesis in
male offspring mice from the perspective of metabolism.
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Figure 1

Effect of DBP/MBP on glucose metabolism in SCs. (A) Colocalization of Alexa Fluor 488-labeled MCT4
(green) with Alexa Fluor 594-labeled SOX9 (red, a marker of SCs), Alexa Fluor 594-labeled LDHA (red) with
Alexa Fluor 488-labeled vimentin (green, a marker of SCs) in the testis was examined using a confocal
�uorescence microscope. TM4 cells were treated with various concentration of MBP for 24 h. (B) Lactate
production was determined using a commercial assay kit. (C) Glucose consumption was determined
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using a commercial assay kit. (D) Extracellular acidi�cation rates (ECAR) of Control and MBP-treated
TM4 cells before or after indicated treatments. (E) The expression levels of proteins related to glucose
metabolism were analyzed by Western blot. GAPDH was run as an internal control. (F) Nuclear and
cytosolic fractions were prepared from the control and MBP-induced TM4 cells. Levels of β-catenin were
analyzed by western blot. GAPDH and Lamin B1 served as cytosolic and nuclear markers, respectively.
Results are expressed as means ± SEM (n = 3). ** P < 0.01; * P < 0.05, compared with the control.

Figure 2
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Effect of monobutyl phthalate (MBP) on triglycerides (TG) levels and lipid droplet (LD) formation in TM4
cells. TM4 cells were treated with various concentration of MBP for 24 h. (A) Intracellular lipid content
visualized with nile red (red) staining. Nuclei were stained with DAPI (blue). The arrow indicates lipid
droplet. (B) TG levels were determined in cell lysates and expressed as millimoles TG/grams protein. (C)
Relative mRNA expression of genes related to fatty acid storage in TM4 cells. GAPDH was run as an
internal control. (D) Nuclear and cytosolic fractions were prepared from the control and MBP-induced
TM4 cells. Levels of PPARγ were analyzed by western blot. GAPDH and Lamin B1 served as cytosolic and
nuclear markers, respectively. Results are expressed as means ± SEM (n = 3). ** P < 0.01; * P < 0.05,
compared with the control.
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Figure 3

Effect of MBP on FAs oxidation in TM4 cells. TM4 cells were treated with various concentration of MBP
for 24 h. (A) Relative mRNA expression of indicated genes related to lipid β-oxidation in TM4 cells.
GAPDH was run as an internal control. (B) The oxygen consumption rate (OCR) was determined using
Seahorse XF analyzers. (C) The intracellular ATP content was performed using an ATP Assay Kit by a
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microbeta counter. Results are expressed as means ± SEM (n = 3). ** P < 0.01; * P < 0.05, compared with
the control.

Figure 4

Effect of MBP on fatty acid uptake in TM4 cells. TM4 cells were treated with various concentration of
MBP for 24 h. (A) Relative mRNA expression of genes related to de novo lipogenesis in TM4 cells. GAPDH
was run as an internal control. (B) Relative mRNA expression of genes related to exogenous uptake of
FAs in TM4 cells. GAPDH was run as an internal control. (C) Bar graph depicting ELISA results of fatty
acid uptake by TM4 cells using a Free Fatty Acid Uptake Assay Kit. Results are expressed as means ±
SEM (n = 3). ** P < 0.01; * P < 0.05, compared with the control.
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Figure 5

Effect of DBP/MBP on CD36 expression in SCs. (A) CD36 mRNA expression levels in testis were analyzed
by qRT-PCR. GAPDH was run as an internal control (n = 3). (B) The expression levels of CD36 in testis
were analyzed by Western blot. GAPDH was run as an internal control (n = 3). (C) Co-localization of Alexa
Fluor 488-labeled Vimentin (green, a marker of SCs) with Alexa Fluor 594-labeled CD36 in testis was
examined by a confocal �uorescence microscope. TM4 cells were treated with various concentration of
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MBP for 24 h. (D) The expression levels of CD36 were analyzed by Western blot. GAPDH was run as an
internal control (n = 3). (E) The expression levels of CD36 were analyzed by Immuno�uorescence. (F) The
expression levels of CD36 in cell surface were analyzed by Flow cytometry. Results are expressed as
means ± SEM (n = 3). ** P < 0.01; * P < 0.05, compared with the control.

Figure 6

Effect of apoptotic germ cells on CD36 expression in SCs. Apoptotic germ cells co-culture with SCs at 0,
3, 6, 12, and 24 h. (A) CD36 mRNA expression levels in SCs were analyzed by qRT-PCR. GAPDH was run
as an internal control. (B) The expression levels of CD36 in SCs were analyzed by Western blot. GAPDH
was run as an internal control. (C) TG levels were determined in SCs lysates and expressed as millimoles
TG/grams protein. (D) LCAD mRNA expression levels in SCs were analyzed by qRT-PCR. GAPDH was run
as an internal control. Results are expressed as means ± SEM (n = 3). ** P < 0.01; * P < 0.05, compared
with the control.
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Figure 7

Effect of CD36 on FAs metabolism in TM4 cells. TM4 cells were transfected with control or CD36
knockdown plasmid and then treated with MBP. (A) Intracellular lipid content visualized with nile red (red)
staining. Nuclei were stained with DAPI (blue). The arrow indicates lipid droplet. (B) TG levels were
determined in cell lysates and expressed as millimoles TG/grams protein. (C) Bar graph depicting ELISA
results of fatty acid uptake by TM4 cells using a Free Fatty Acid Uptake Assay Kit. (D) The intracellular
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ATP content was performed using an ATP Assay Kit by a microbeta counter. (E) Apoptotic cells were
stained with Annexin V-FITC/PI and analyzed by �ow cytometry. The level of apoptosis in TM4 cells was
calculated. (F) Cell cycle distribution was analyzed by �ow cytometry. Results are expressed as means ±
SEM (n = 3). ** P < 0.01; * P < 0.05, compared with the control. # P < 0.05, compared with MBP-treated
group.

Figure 8

Legend not included with this version.
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