1. Liu, Z., Zhou, T., Ziegler, A. C., Dimitrion, P., Zuo, L. (2017). Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. Oxidative Medicine and Cellular Longevity, 2017, 1–11. doi:10.1155/2017/2525967
2. Kieroń, M., Żekanowski, C., Falk, A., Wężyk, M. (2019). Oxidative DNA Damage Signalling in Neural Stem Cells in Alzheimer’s Disease. Oxidative Medicine and Cellular Longevity, 2019, 1–10. doi:10.1155/2019/2149812
3. Shoemaker LD, Kornblum HI. (2016). Neural Stem Cells (NSCs) and Proteomics. Molecular & Cellular Proteomics, 15(2):344-54. doi: 10.1074/mcp.O115.052704
4. O’Sullivan, R. J., Karlseder, J. (2010). Telomeres: protecting chromosomes against genome instability. Nature Reviews Molecular Cell Biology, 11(3), 171–181. doi:10.1038/nrm2848
5. Shay, J. W., Wright, W. E. (2019). Telomeres and telomerase: three decades of progress. Nature Reviews Genetics. doi:10.1038/s41576-019-0099-1
6. Srinivas, N., Rachakonda, S., Kumar, R. (2020). Telomeres and Telomere Length: A General Overview. Cancers, 12(3), 558. doi:10.3390/cancers12030558
7. Graf, M., Bonetti, D., Lockhart, A., Serhal, K., Kellner, V., Maicher, A., Jolivet, P., Teixeira, M. T., Luke, B. (2017). Telomere Length Determines TERRA and R-Loop Regulation through the Cell Cycle. Cell, 170(1), 72–85.e14. doi:10.1016/j.cell.2017.06.006
8. Li, W., Ma, Y., Li, Z., Lv, X., Wang, X., Zhou, D., Luo, S., Wilson, J. X., Huang, G. (2019). Folic Acid Decreases Astrocyte Apoptosis by Preventing Oxidative Stress-Induced Telomere Attrition. International Journal of Molecular Sciences, 21(1), 62. doi:10.3390/ijms21010062
9. Cui, S., Lv, X., Li, W., Li, Z., Liu, H., Gao, Y., Huang, G. (2018). Folic acid modulates VPO1 DNA methylation levels and alleviates oxidative stress-induced apoptosis in vivo and in vitro. Redox Biology, 19, 81–91. doi:10.1016/j.redox.2018.08.005
10. Barnes, R. P., Fouquerel, E., Opresko, P. L. (2018). The impact of oxidative DNA damage and stress on telomere homeostasis. Mechanisms of Ageing and Development. doi:10.1016/j.mad.2018.03.013
11. Reynolds, E. (2006). Vitamin B12, folic acid, and the nervous system. The Lancet Neurology, 5(11), 949–960. doi:10.1016/s1474-4422(06)70598-1
12. Li, W., Yu, M., Luo, S., Liu, H., Gao, Y., Wilson, J. X., Huang, G. (2013). DNA methyltransferase mediates dose-dependent stimulation of neural stem cell proliferation by folate. The Journal of Nutritional Biochemistry, 24(7), 1295–1301. doi:10.1016/j.jnutbio.2012.11.001
13. Luo, S., Zhang, X., Yu, M., Yan, H., Liu, H., Wilson, J. X., Huang, G. (2013). Folic Acid Acts Through DNA Methyltransferases to Induce the Differentiation of Neural Stem Cells into Neurons. Cell Biochemistry and Biophysics, 66(3), 559–566. doi:10.1007/s12013-012-9503-6
14. Jia, D., Liu, H., Wang, F., Liu, S., Ling, E., Liu, K., Hao, A. (2008). Folic acid supplementation affects apoptosis and differentiation of embryonic neural stem cells exposed to high glucose. Neuroscience Letters, 440(1), 27–31. doi:10.1016/j.neulet.2008.05.053
15. Khandelwal, S., Boylan, M., Kirsch, G., Spallholz, J. E., Gollahon, L. S. (2020). Investigating the Potential of Conjugated Selenium Redox Folic Acid as a Treatment for Triple Negative Breast Cancer. Antioxidants, 9(2), 138. doi:10.3390/antiox9020138
16. Pang, Z., Zhou, J., Sun, C. (2020). Ditelluride-Bridged PEG-PCL Copolymer as Folic Acid-Targeted and Redox-Responsive Nanoparticles for Enhanced Cancer Therapy. Frontiers in Chemistry, 8. doi:10.3389/fchem.2020.00156
17. Lv, X., Wang, X., Wang, Y., Zhou, D., Li, W., Wilson J. X., Chang, H., Huang, G. (2019). Folic acid delays age-related cognitive decline in senescence-accelerated mouse prone 8: alleviating telomere attrition as a potential mechanism. Aging, 11(22):10356-10373. doi:10.18632/aging.102461
18. Jeesun Kim, Paul K.Y. Wong. (2009). Loss of ATM impairs proliferation of neural stem cells through oxidative stress-mediated p38 MAPK signaling. Stem Cells. 27(8):1987-98. doi: 10.1002/stem.125
19. Chien-Cheng Chen, Ching-Wu Hsia, Cheng-Wen Ho, Chang-Min Liang, Chieh-Min Chen, Kun-Lun Huang, Bor-Hwang Kang, Yi-Hui Chen. (2017). Hypoxia and hyperoxia differentially control proliferation of rat neural crest stem cells via distinct regulatory pathways of the HIF1α-CXCR4 and TP53-TPM1 proteins. Dev Dyn. 246(3):162-185. doi: 10.1002/dvdy.24481
20. Liu XL, Lu YS, Gao JY, Marshall C, Xiao M, Miao DS, Karaplis A, Goltzman D, Ding J. (2013). Calcium sensing receptor absence delays postnatal brain development via direct and indirect mechanisms. Mol Neurobiol, 48:590–600. doi: 10.1007/s12035-013-8448-0
21. Cawthon, R. M. (2009). Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Research, 37(3), e21–e21. doi:10.1093/nar/gkn1027
22. Dong, Y., Zhang, G., Yuan, X., Zhang, Y., Hu, M. (2016). Telomere length and telomere repeating factors: Cellular markers for post-traumatic stress disorder-like model. Journal of Affective Disorders, 195:156-162. doi: 10.1016/j.jad.2016.02.032
23. Mishra D, Rai R, Srivastav SK, Srivastav AK. (2011). Histological alterations in the prolactin cells of a teleost, Heteropneustes fossilis, after exposure to cypermethrin. Environ Toxicol. 26(4):359–363. doi: 10.1002/tox.20562
24. Canton CG, Anadon A, Meredith C. (2012). γ-H2AX as a novel endpoint to detect DNA damage: applications for the assessment of the in vitro genotoxicity of cigarette smoke. Toxicol In Vitro. 26(7):1075–1086. doi: 10.1016/j.tiv.2012.06.006
25. O’Callaghan, N., Baack, N., Sharif, R., Fenech, M. (2011). A qPCR-based assay to quantify oxidized guanine and other FPG-sensitive base lesions within telomeric DNA. BioTechniques, 51(6). doi:10.2144/000113788
26. Louisa S Tang, Daniel R Santillano, Bogdan J Wlodarczyk, Rajesh C Miranda, Richard H Finnell. (2005). Role of Folbp1 in the regional regulation of apoptosis and cell proliferation in the developing neural tube and craniofacies. 15;135C(1):48-58. Am J Med Genet C Semin Med Genet. doi: 10.1002/ajmg.c.30053
27. Liu, H., Huang, G., Zhang, X., Ren, D., Wilson, J. X. (2010). Folic Acid Supplementation Stimulates Notch Signaling and Cell Proliferation in Embryonic Neural Stem Cells. Journal of Clinical Biochemistry and Nutrition, 47(2), 174–180. doi:10.3164/jcbn.10-47
28. Cheng, M., Yang, L., Dong, Z., Wang, M., Sun, Y., Liu, H., Wang, X., Sai, N., Huang, G., Zhang, X. (2019). Folic acid deficiency enhanced microglial immune response via the Notch1/nuclear factor kappa B p65 pathway in hippocampus following rat brain I/R injury and BV2 cells. Journal of Cellular and Molecular Medicine. doi:10.1111/jcmm.14368
29. Shen, Y., Dong, Z., Pan, P., Xu, G., Huang, J, Liu, C. (2019). Association of homocysteine, folate, and white matter hyperintensities in Parkinson’s patients with different motor phenotypes. Neurological Sciences. doi:10.1007/s10072-019-03906-3
30. Coray, T. W. (2016). Ageing, neurodegeneration and brain rejuvenation. Nature, 539(7628), 180–186. doi:10.1038/nature20411
31. Violi, F., Loffredo, L., Carnevale, R., Pignatelli, P., Pastori, D. (2017). Atherothrombosis and Oxidative Stress: Mechanisms and Management in Elderly. Antioxidants & Redox Signaling, 27(14), 1083–1124. doi:10.1089/ars.2016.6963
32. Kahya, M. C., Nazıroğlu, M., Övey, İ. S. (2016). Modulation of Diabetes-Induced Oxidative Stress, Apoptosis, and Ca2+ Entry Through TRPM2 and TRPV1 Channels in Dorsal Root Ganglion and Hippocampus of Diabetic Rats by Melatonin and Selenium. Molecular Neurobiology, 54(3), 2345–2360. doi:10.1007/s12035-016-9727-3
33. Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M. C. B., Rahu, N. (2016). Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxidative Medicine and Cellular Longevity, 2016, 1–9. doi:10.1155/2016/7432797
34. Liu, Z., Nie, R., Liu, Y., Li, Z., Yang, C., Xiong, Z. (2017). Effects of total soy saponins on free radicals in the quadriceps femoris, serum testosterone, LDH, and BUN of exhausted rats. Journal of Sport and Health Science, 6(3), 359–364. doi:10.1016/j.jshs.2016.01.016
35. Moretti, E., Micheli, L., Noto, D., Fiaschi, A. I., Menchiari, A., Cerretani, D. (2019). Resistin in Human Seminal Plasma: Relationship with Lipid Peroxidation, CAT Activity, GSH/GSSG Ratio, and Semen Parameters. Oxidative Medicine and Cellular Longevity, 2019, 1–8. doi:10.1155/2019/2192093
36. Shay, J. W. (2018). Telomeres and aging. Current Opinion in Cell Biology, 52, 1–7. doi:10.1016/j.ceb.2017.12.001
37. Rivera, T., Haggblom, C., Cosconati, S., Karlseder, J. (2016). A balance between elongation and trimming regulates telomere stability in stem cells. Nature Structural & Molecular Biology, 24(1), 30–39. doi:10.1038/nsmb.3335
38. Liu, J., Wang, L., Wang, Z., Liu, J. (2019). Roles of Telomere Biology in Cell Senescence, Replicative and Chronological Ageing. Cells, 8(1), 54. doi:10.3390/cells8010054
39. Sousounis, K., Baddour, J. A., Tsonis, P. A. (2014). Aging and Regeneration in Vertebrates. Current Topics in Developmental Biology, 217–246. doi:10.1016/b978-0-12-391498-9.00008-5
40. Aeby, E., Ahmed, W., Redon, S., Simanis, V., Lingner, J. (2016). Peroxiredoxin 1 Protects Telomeres from Oxidative Damage and Preserves Telomeric DNA for Extension by Telomerase. Cell Reports, 17(12), 3107–3114. doi:10.1016/j.celrep.2016.11.071
41. Von Zglinicki, T., Pilger, R., Sitte, N. (2000). Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radical Biology and Medicine, 28(1), 64–74. doi:10.1016/s0891-5849(99)00207-5
42. Aeby, E., Ahmed, W., Redon, S., Simanis, V., Lingner, J. (2016). Peroxiredoxin 1 Protects Telomeres from Oxidative Damage and Preserves Telomeric DNA for Extension by Telomerase. Cell Reports, 17(12), 3107–3114. doi:10.1016/j.celrep.2016.11.071
43. Chernikov, A. V., Gudkov, S. V., Usacheva, A. M., Bruskov, V. I. (2017). Exogenous 8-oxo-7,8-dihydro-2′-deoxyguanosine: Biomedical properties, mechanisms of action, and therapeutic potential. Biochemistry (Moscow), 82(13), 1686–1701. doi:10.1134/s0006297917130089
44. Kurz, D. J. (2004). Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. Journal of Cell Science, 117(11), 2417–2426. doi:10.1242/jcs.01097
45. Gorelova, V., De Lepeleire, J., Van Daele, J., Pluim, D., Meï, C., Cuypers, A., Leroux, O., Rébeillé, F., H M Schellens, J., Blancquaert, D., P Stove, S., Van Der Straeten, D. (2017). Dihydrofolate Reductase/Thymidylate Synthase Fine-Tunes the Folate Status and Controls Redox Homeostasis in Plants. The Plant Cell, 29(11), 2831–2853. doi:10.1105/tpc.17.00433