1 Kattel, S., Ramirez, P. J., Chen, J. G., Rodriguez, J. A. & Liu, P. CATALYSIS Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355, 1296-+, doi:10.1126/science.aal3573 (2017).
2 Choi, Y. et al. Unravelling inherent electrocatalysis of mixed-conducting oxide activated by metal nanoparticle for fuel cell electrodes. Nature Nanotechnology 14, 245-+, doi:10.1038/s41565-019-0367-4 (2019).
3 Farmer, J. A. & Campbell, C. T. Ceria Maintains Smaller Metal Catalyst Particles by Strong Metal-Support Bonding. Science 329, 933-936, doi:10.1126/science.1191778 (2010).
4 Kwak, N. W. et al. In situ synthesis of supported metal nanocatalysts through heterogeneous doping. Nature Communications 9, doi:10.1038/s41467-018-07050-y (2018).
5 Jo, Y.-R. et al. Growth Kinetics of Individual Co Particles Ex-solved on SrTi0.75Co0.25O3-δ Polycrystalline Perovskite Thin Films. J. Am. Chem. Soc. 141, 6690-6697, doi:10.1021/jacs.9b01882 (2019).
6 Fu, Q., Weber, A. & Flytzani-Stephanopoulos, M. Nanostructured Au-CeO2 catalysts for low-temperature water-gas shift. Catal. Lett. 77, 87-95, doi:10.1023/a:1012666128812 (2001).
7 Rodriguez, J. A. et al. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science 318, 1757-1760, doi:10.1126/science.1150038 (2007).
8 Green, I. X., Tang, W. J., Neurock, M. & Yates, J. T. Spectroscopic Observation of Dual Catalytic Sites During Oxidation of CO on a Au/TiO2 Catalyst. Science 333, 736-739, doi:10.1126/science.1207272 (2011).
9 Park, J. B. et al. Gold, Copper, and Platinum Nanoparticles Dispersed on CeOx/TiO2(110) Surfaces: High Water-Gas Shift Activity and the Nature of the Mixed-Metal Oxide at the Nanometer Level. J. Am. Chem. Soc. 132, 356-363, doi:10.1021/ja9087677 (2010).
10 Kim, K. et al. A Simple Descriptor to Rapidly Screen CO Oxidation Activity on Rare-Earth Metal-Doped CeO2: From Experiment to First-Principles. Acs Applied Materials & Interfaces 9, 15449-15458, doi:10.1021/acsami.7b01844 (2017).
11 Kayaalp, B. et al. Template-free mesoporous La<inf>0.3</inf>Sr<inf>0.7</inf>Fe<inf>x</inf>Ti<inf>1-x</inf>O<inf>3±Δ</inf> with superior oxidation catalysis performance. Applied Catalysis B: Environmental 245, 536-545, doi:10.1016/j.apcatb.2018.12.077 (2019).
12 Montini, T., Melchionna, M., Monai, M. & Fornasiero, P. Fundamentals and Catalytic Applications of CeO2-Based Materials. Chemical Reviews 116, 5987-6041, doi:10.1021/acs.chemrev.5b00603 (2016).
13 Rodriguez, J. A., Grinter, D. C., Liu, Z. Y., Palomino, R. M. & Senanayake, S. D. Ceria-based model catalysts: fundamental studies on the importance of the metal-ceria interface in CO oxidation, the water-gas shift, CO2 hydrogenation, and methane and alcohol reforming. Chemical Society Reviews 46, 1824-1841, doi:10.1039/c6cs00863a (2017).
14 Sun, C. W., Li, H. & Chen, L. Q. Nanostructured ceria-based materials: synthesis, properties, and applications. Energy & Environmental Science 5, 8475-8505, doi:10.1039/c2ee22310d (2012).
15 An, K. et al. Enhanced CO Oxidation Rates at the Interface of Mesoporous Oxides and Pt Nanoparticles. J. Am. Chem. Soc. 135, 16689-16696, doi:10.1021/ja4088743 (2013).
16 Chen, A. L. et al. Structure of the catalytically active copper-ceria interfacial perimeter. Nature Catalysis 2, 334-341, doi:10.1038/s41929-019-0226-6 (2019).
17 Pcrcira-Hcrnandcz, X. I. et al. Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nature Communications 10, doi:10.1038/s41467-019-09308-5 (2019).
18 Daelman, N., Capdevila-Cortada, M. & Lopez, N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat. Mater. 18, 1215-+, doi:10.1038/s41563-019-0444-y (2019).
19 Yao, S. Y. et al. Atomic-layered Au clusters on a-MoC as catalysts for the low-temperature water-gas shift reaction. Science 357, 389-393, doi:10.1126/science.aah4321 (2017).
20 Nie, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358, 1419-1423, doi:10.1126/science.aao2109 (2017).
21 van Deelen, T. W., Hernández Mejía, C. & de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nature Catalysis 2, 955-970, doi:10.1038/s41929-019-0364-x (2019).
22 Bruix, A. et al. A New Type of Strong Metal–Support Interaction and the Production of H2 through the Transformation of Water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) Catalysts. J. Am. Chem. Soc. 134, 8968-8974, doi:10.1021/ja302070k (2012).
23 Vayssilov, G. N. et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat. Mater. 10, 310-315, doi:10.1038/nmat2976 (2011).
24 Foppa, L. et al. Contrasting the Role of Ni/Al2O3 Interfaces in Water-Gas Shift and Dry Reforming of Methane. J. Am. Chem. Soc. 139, 17128-17139, doi:10.1021/jacs.7b08984 (2017).
25 Liu, Z. Y. et al. In Situ Investigation of Methane Dry Reforming on Metal/Ceria(111) Surfaces: Metal-Support Interactions and C-H Bond Activation at Low Temperature. Angew. Chem. Int. Ed. 56, 13041-13046, doi:10.1002/anie.201707538 (2017).
26 Corral-Perez, J. J. et al. Decisive Role of Perimeter Sites in Silica-Supported Ag Nanoparticles in Selective Hydrogenation of CO2 to Methyl Formate in the Presence of Methanol. J. Am. Chem. Soc. 140, 13884-13891, doi:10.1021/jacs.8b08505 (2018).
27 Liu, A. N. et al. Getting Insights into the Temperature-Specific Active Sites on Platinum Nanoparticles for CO Oxidation: A Combined in Situ Spectroscopic and ab Initio Density Functional Theory Study. Acs Catalysis 9, 7759-7768, doi:10.1021/acscatal.9b02552 (2019).
28 Suchorski, Y. et al. The role of metal/oxide interfaces for long-range metal particle activation during CO oxidation. Nat. Mater. 17, 519-+, doi:10.1038/s41563-018-0080-y (2018).
29 Hanukovich, S., Dang, A. & Christopher, P. Influence of Metal Oxide Support Acid Sites on Cu-Catalyzed Nonoxidative Dehydrogenation of Ethanol to Acetaldehyde. Acs Catalysis 9, 3537-3550, doi:10.1021/acscatal.8b05075 (2019).
30 Ganzler, A. M. et al. Tuning the Pt/CeO2 Interface by in Situ Variation of the Pt Particle Size. Acs Catalysis 8, 4800-4811, doi:10.1021/acscatal.8b00330 (2018).
31 Murata, K. et al. Identification of active sites in CO oxidation over a Pd/Al2O3 catalyst. Physical Chemistry Chemical Physics 21, 18128-18137, doi:10.1039/c9cp03943k (2019).
32 Cargnello, M. et al. Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts. Science 341, 771-773, doi:10.1126/science.1240148 (2013).
33 Hansen, T. W., Delariva, A. T., Challa, S. R. & Datye, A. K. Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening? Acc. Chem. Res. 46, 1720-1730, doi:10.1021/ar3002427 (2013).
34 Cargnello, M. et al. Exceptional Activity for Methane Combustion over Modular Pd@CeO2 Subunits on Functionalized Al2O3. Science 337, 713-717, doi:10.1126/science.1222887 (2012).
35 Zhang, F. et al. In Situ Elucidation of the Active State of Co-CeOx Catalysts in the Dry Reforming of Methane: The Important Role of the Reducible Oxide Support and Interactions with Cobalt. Acs Catalysis 8, 3550-3560, doi:10.1021/acscatal.7b03640 (2018).
36 Seo, J., Lee, S., Koo, B. & Jung, W. Controlling the size of Pt nanoparticles with a cationic surfactant, CnTABr. Cryst. Eng. Comm. 20, 2010-2015 (2018).
37 Lee, S., Seo, J. & Jung, W. Sintering-resistant Pt@CeO2 nanoparticles for high-temperature oxidation catalysis. Nanoscale 8, 10219-10228, doi:10.1039/c6nr00170j (2016).
38 Joo, S. H. et al. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat. Mater. 8, 126-131, doi:10.1038/nmat2329 (2009).
39 Kim, S., Lee, S. & Jung, W. Sintering Resistance of Pt@SiO<inf>2</inf> Core-Shell Catalyst. ChemCatChem 11, 4653-4659, doi:10.1002/cctc.201900934 (2019).
40 Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 104, 1153-1175, doi:10.1021/jp993593c (2000).
41 Zhang, S. et al. Dynamic structural evolution of supported palladium–ceria core–shell catalysts revealed by in situ electron microscopy. Nature Communications 6, 7778, doi:10.1038/ncomms8778 (2015).
42 Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150, doi:10.1126/science.aaf8800 (2016).
43 Pereira-Hernández, X. I. et al. Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nature Communications 10, 1358, doi:10.1038/s41467-019-09308-5 (2019).
44 Kunwar, D. et al. Stabilizing High Metal Loadings of Thermally Stable Platinum Single Atoms on an Industrial Catalyst Support. ACS Catalysis 9, 3978-3990, doi:10.1021/acscatal.8b04885 (2019).
45 Klug, A. & Crowther, R. A. Three-dimensional Image Reconstruction from the Viewpoint of information Theory. Nature 238, 435-440, doi:10.1038/238435a0 (1972).
46 Riscoe, A. R. et al. Transition state and product diffusion control by polymer–nanocrystal hybrid catalysts. Nature Catalysis 2, 852-863, doi:10.1038/s41929-019-0322-7 (2019).
47 Nguyen, T. S. et al. Correlation of the ratio of metallic to oxide species with activity of PdPt catalysts for methane oxidation. Catalysis Science & Technology 10, 1408-1421, doi:10.1039/C9CY02371B (2020).
48 Tao, F. F. et al. Understanding complete oxidation of methane on spinel oxides at a molecular level. Nature Communications 6, doi:10.1038/ncomms8798 (2015).
49 Arai, H., Yamada, T., Eguchi, K. & Seiyama, T. CATALYTIC COMBUSTION OF METHANE OVER VARIOUS PEROVSKITE-TYPE OXIDES. Appl. Catal. 26, 265-276, doi:10.1016/s0166-9834(00)82556-7 (1986).
50 Yao, Y. F. Y. OXIDATION OF ALKANES OVER NOBLE-METAL CATALYSTS. Ind. Eng. Chem. Prod. Res. Dev. 19, 293-298, doi:10.1021/i360075a003 (1980).
51 Wang, X. & Gorte, R. J. A study of steam reforming of hydrocarbon fuels on Pd/ceria. Appl. Catal. A Gen. 224, 209-218, doi:10.1016/s0926-860x(01)00783-9 (2002).
52 Tang, W. et al. Methane complete and partial oxidation catalyzed by Pt-doped CeO2. J. Catal. 273, 125-137, doi:10.1016/j.jcat.2010.05.005 (2010).
53 Lustemberg, P. G. et al. Room-Temperature Activation of Methane and Dry Re-forming with CO2 on Ni-CeO2(111) Surfaces: Effect of Ce3+ Sites and Metal-Support Interactions on C-H Bond Cleavage. Acs Catalysis 6, 8184-8191, doi:10.1021/acscatal.6b02360 (2016).
54 Chin, Y. H., Buda, C., Neurock, M. & Iglesia, E. Reactivity of Chemisorbed Oxygen Atoms and Their Catalytic Consequences during CH4-O-2 Catalysis on Supported Pt Clusters. J. Am. Chem. Soc. 133, 15958-15978, doi:10.1021/ja202411v (2011).
55 Vincent, L. & Soille, P. WATERSHEDS IN DIGITAL SPACES - AN EFFICIENT ALGORITHM BASED ON IMMERSION SIMULATIONS. Ieee Transactions on Pattern Analysis and Machine Intelligence 13, 583-598, doi:10.1109/34.87344 (1991).
56 Penczek, P., Marko, M., Buttle, K. & Frank, J. DOUBLE-TILT ELECTRON TOMOGRAPHY. Ultramicroscopy 60, 393-410, doi:10.1016/0304-3991(95)00078-x (1995).
57 Mastronarde, D. N. Dual-axis tomography: An approach with alignment methods that preserve resolution. Journal of Structural Biology 120, 343-352, doi:10.1006/jsbi.1997.3919 (1997).
58 Frangakis, A. S. & Hegerl, R. Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. Journal of Structural Biology 135, 239-250, doi:10.1006/jsbi.2001.4406 (2001).
59 Weyland, M. Electron tomography of catalysts. Topics in Catalysis 21, 175-183, doi:10.1023/a:1021385427655 (2002).
60 Perona, P. & Malik, J. SCALE-SPACE AND EDGE-DETECTION USING ANISOTROPIC DIFFUSION. Ieee Transactions on Pattern Analysis and Machine Intelligence 12, 629-639, doi:10.1109/34.56205 (1990).
61 Midgley, P. A. & Weyland, M. 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413-431, doi:10.1016/s0304-3991(03)00105-0 (2003).
62 Holzer, L., Indutnyi, F., Gasser, P. H., Munch, B. & Wegmann, M. Three-dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography. Journal of Microscopy-Oxford 216, 84-95, doi:10.1111/j.0022-2720.2004.01397.x (2004).
63 Fernandez, J. J. & Li, S. Anisotropic nonlinear filtering of cellular structures in cryoelectron tomography. Computing in Science & Engineering 7, 54-61, doi:10.1109/mcse.2005.89 (2005).
64 Yates, T. J. V. et al. Three-dimensional real-space crystallography of MCM-48 mesoporous silica revealed by scanning transmission electron tomography. Chemical Physics Letters 418, 540-543, doi:10.1016/j.cplett.2005.11.031 (2006).
65 Ward, E. P. W., Yates, T. J. V., Fernandez, J. J., Vaughan, D. E. W. & Midgley, P. A. Three-dimensional nanoparticle distribution and local curvature of heterogeneous catalysts revealed by electron tomography. Journal of Physical Chemistry C 111, 11501-11505, doi:10.1021/jp072441b (2007).
66 Prieto, G., Zecevic, J., Friedrich, H., de Jong, K. P. & de Jongh, P. E. Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat. Mater. 12, 34-39, doi:10.1038/nmat3471 (2013).
67 Goris, B. et al. Measuring Lattice Strain in Three Dimensions through Electron Microscopy. Nano Letters 15, 6996-7001, doi:10.1021/acs.nanolett.5b03008 (2015).
68 Haberfehlner, G. et al. Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography. Nature Communications 6, doi:10.1038/ncomms9779 (2015).
69 Saha, P. K., Borgefors, G. & di Baja, G. S. A survey on skeletonization algorithms and their applications. Pattern Recognition Letters 76, 3-12, doi:10.1016/j.patrec.2015.04.006 (2016).
70 Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 60, 309-319, doi:10.1021/ja01269a023 (1938).
71 Gilbert, P. Iterative methods for the three-dimensional reconstruction of an object from projections. Journal of Theoretical Biology 36, 105-117, doi:https://doi.org/10.1016/0022-5193(72)90180-4 (1972).
72 Pizer, S. M. et al. ADAPTIVE HISTOGRAM EQUALIZATION AND ITS VARIATIONS. Computer Vision Graphics and Image Processing 39, 355-368, doi:10.1016/s0734-189x(87)80186-x (1987).
73 van Heel, M. & Schatz, M. Fourier shell correlation threshold criteria. Journal of Structural Biology 151, 250-262, doi:https://doi.org/10.1016/j.jsb.2005.05.009 (2005).
74 Nieuwenhuizen, R. P. J. et al. Measuring image resolution in optical nanoscopy. Nature Methods 10, 557-562, doi:10.1038/nmeth.2448 (2013).
75 Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science 6, 15-50, doi:10.1016/0927-0256(96)00008-0 (1996).
76 Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Physical Review Letters 77, 3865-3868, doi:10.1103/PhysRevLett.77.3865 (1996).
77 Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Physical Review B 57, 1505-1509, doi:10.1103/PhysRevB.57.1505 (1998).
78 Kim, H. Y., Lee, H. M. & Henkelman, G. CO Oxidation Mechanism on CeO2-Supported Au Nanoparticles. J. Am. Chem. Soc. 134, 1560-1570, doi:10.1021/ja207510v (2012).
79 Blochl, P. E. PROJECTOR AUGMENTED-WAVE METHOD. Physical Review B 50, 17953-17979, doi:10.1103/PhysRevB.50.17953 (1994).
80 Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics 113, 9901-9904, doi:10.1063/1.1329672 (2000).