1 Bush, K. A. et al. Minimizing Current and Voltage Losses to Reach 25% Efficient Monolithic Two-Terminal Perovskite–Silicon Tandem Solar Cells. ACS Energy Letters 3, 2173-2180 (2018).
2 Miyata, A. et al. Direct Measurement of the Exciton Binding Energy and Effective Masses for Charge Carriers in Organic–Inorganic Tri-Halide Perovskites. Nature Physics 11, 582-587 (2015).
3 Galkowski, K. et al. Determination of the Exciton Binding Energy and Effective Masses for Methylammonium and Formamidinium Lead Tri-Halide Perovskite Semiconductors. Energy & Environmental Science 9, 962-970 (2016).
4 Dong, Q. et al. Electron-Hole Diffusion Lengths > 175 mm in Solution-Grown CH3NH3PbI3 Single Crystals. Science 347, 967-970 (2015).
5 Lim, J. et al. Elucidating the Long-Range Charge Carrier Mobility in Metal Halide Perovskite Thin Films. Energy & Environmental Science 12, 169-176 (2019).
6 Park, N.-G. & Zhu, K. Scalable Fabrication and Coating Methods for Perovskite Solar Cells and Solar Modules. Nature Reviews Materials 5, 333-350 (2020).
7 Chen, T.-P. et al. Self-Assembly Atomic Stacking Transport Layer of 2D Layered Titania for Perovskite Solar Cells with Extended UV Stability. Advanced Energy Materials 8 (2018).
8 Kubicki, D. J. et al. Formation of Stable Mixed Guanidinium-Methylammonium Phases with Exceptionally Long Carrier Lifetimes for High-Efficiency Lead Iodide-Based Perovskite Photovoltaics. J. Am. Chem. Soc 140, 3345-3351 (2018).
9 Gong, J. et al. Electron-Rotor Interaction in Organic-Inorganic Lead Iodide Perovskites Discovered by Isotope Effects. J. Phys. Chem. Lett 7, 2879-2887 (2016).
10 Kubicki, D. J. et al. Cation Dynamics in Mixed-Cation (MA)x(FA)1-xPbI3 Hybrid Perovskites from Solid-State NMR. J. Am. Chem. Soc 139, 10055-10061 (2017).
11 Bernard, G. M. et al. Methylammonium Cation Dynamics in Methylammonium Lead Halide Perovskites: A Solid-State NMR Perspective. J. Phys Chem. A 122, 1560-1573 (2018).
12 Selig, O. et al. Organic Cation Rotation and Immobiliszation in Pure and Mixed Methylammonium Lead-Halide Perovskites. J. Am. Chem. Soc 139, 4068-4074 (2017).
13 Kubicki, D. J. et al. Phase Segregation in Potassium-Doped Lead Halide Perovskites from (39)K Solid-State NMR at 21.1 T. J. Am. Chem. Soc 140, 7232-7238 (2018).
14 Motta, C. et al. Revealing the Role of Organic Cations in Hybrid Halide Perovskite CH3NH3PbI3. Nat. Commun 6, 7026 (2015).
15 Fabini, D. H. et al. Universal Dynamics of Molecular Reorientation in Hybrid Lead Iodide Perovskites. J. Am. Chem. Soc 139, 16875-16884 (2017).
16 Senocrate, A., Moudrakovski, I. & Maier, J. Short-Range Ion Dynamics in Methylammonium Lead Iodide by Multinuclear Solid State NMR and (127)I NQR. Phys. Chem. Chem. Phys 20, 20043-20055 (2018).
17 Weller, M. T., Weber, O. J., Henry, P. F., Di Pumpo, A. M. & Hansen, T. C. Complete Structure and Cation Orientation in the Perovskite Photovoltaic Methylammonium Lead Iodide between 100 and 352 K. Chem. Commun 51, 4180-4183 (2015).
18 Leguy, A. M. et al. The Dynamics of Methylammonium Ions in Hybrid Organic-Inorganic Perovskite Solar Cells. Nat. Commun 6, 7124 (2015).
19 Chen, T. et al. Rotational Dynamics of Organic Cations in the CH3NH3PbI3 Perovskite. Phys. Chem. Chem. Phys 17, 31278-31286 (2015).
20 Gallop, N. P. et al. Rotational Cation Dynamics in Metal Halide Perovskites: Effect on Phonons and Material Properties. J. Phys. Chem. Lett 9, 5987-5997 (2018).
21 Mitzi, D. B., Feild, C. A., Harrison, W. T. A. & Guloy, A. M. Conducting Tin Halides with a Layered Organic-Based Perovskite Structure. Nature 369, 467-469 (1994).
22 Alanazi, A. Q. et al. Atomic-Level Microstructure of Efficient Formamidinium-Based Perovskite Solar Cells Stabilised by 5-Ammonium Valeric Acid Iodide Revealed by Multinuclear and Two-Dimensional Solid-State NMR. J. Am. Chem. Soc 141, 17659-17669 (2019).
23 Dong, Y., Lu, D., Xu, Z., Lai, H. & Liu, Y. 2‐Thiopheneformamidinium‐Based 2D Ruddlesden–Popper Perovskite Solar Cells with Efficiency of 16.72% and Negligible Hysteresis. Advanced Energy Materials 10, 2000694 (2020).
24 Hope, M. A. et al. Nanoscale Phase Segregation in Supramolecular π-Templating for Hybrid Perovskite Photovoltaics from NMR Crystallography. Journal of the American Chemical Society (2021). https://doi.org/10.1021/jacs.0c11563.
25 Mao, L., Stoumpos, C. C. & Kanatzidis, M. G. Two-Dimensional Hybrid Halide Perovskites: Principles and Promises. J. Am. Chem. Soc 141, 1171-1190 (2019).
26 Saparov, B. & Mitzi, D. B. Organic-Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chem. Rev 116, 4558-4596 (2016).
27 Raghavan, C. M. et al. Low-Threshold Lasing from 2D Homologous Organic-Inorganic Hybrid Ruddlesden-Popper Perovskite Single Crystals. Nano Lett 18, 3221-3228 (2018).
28 Milić, J. V. et al. Supramolecular Engineering for Formamidinium‐Based Layered 2D Perovskite Solar Cells: Structural Complexity and Dynamics Revealed by Solid‐State NMR Spectroscopy. Advanced Energy Materials 9, 1900284 (2019).
29 Blancon, J. C. et al. Extremely Efficient Internal Exciton Dissociation Through Edge States in Layered 2D Perovskites. Science 355, 1288-1292 (2017).
30 Tsai, H. et al. High-Efficiency Two-Dimensional Ruddlesden-Popper Perovskite Solar Cells. Nature 536, 312-316 (2016).
31 Li, M. K. et al. Intrinsic Carrier Transport of Phase-Pure Homologous 2D Organolead Halide Hybrid Perovskite Single Crystals. Small 14, 1803763 (2018).
32 Paritmongkol, W. et al. Synthetic Variation and Structural Trends in Layered Two-Dimensional Alkylammonium Lead Halide Perovskites. Chemistry of Materials 31, 5592-5607 (2019).
33 Zheng, K. & Pullerits, T. Two Dimensions are Better for Perovskites. J. Phys. Chem. Lett 10, 5881-5885 (2019).
34 Mitzi, D. B., Chondroudis, K. & Kagan, C. R. Organic-Inorganic Electronics. IBM J. Res. Dev 45, 29-45 (2001).
35 Spanopoulos, I. et al. Uniaxial Expansion of the 2D Ruddlesden-Popper Perovskite Family for Improved Environmental Stability. J. Am. Chem. Soc 141, 5518-5534 (2019).
36 Gao, Y. et al. Molecular Engineering of Organic-InorganicHybrid Perovskites Quantum Wells. Nat. Chem 11, 1151-1157 (2019).
37 Ghosh, D., Neukirch, A. J. & Tretiak, S. Optoelectronic Properties of Two-Dimensional Bromide Perovskites: Influences of Spacer Cations. J. Phys. Chem. Lett 11, 2955-2964 (2020).
38 Dahod, N. S. et al. Melting Transitions of the Organic Subphase in Layered Two-Dimensional Halide Perovskites. J. Phys. Chem. Lett 10, 2924-2930 (2019).
39 Gong, X. et al. Electron-Phonon Interaction in Efficient Perovskite Blue Emitters. Nat. Mater 17, 550-556 (2018).
40 Tremblay, M. H. et al. (4NPEA)2PbI4 (4NPEA = 4-Nitrophenylethylammonium): Structural, NMR, and Optical Properties of a 3 x 3 Corrugated 2D Hybrid Perovskite. J. Am. Chem. Soc 141, 4521-4525 (2019).
41 Schaefer, J., McKay, R. A. & Stejskal, E. O. Double-cross-polarization NMR of solids. Journal of Magnetic Resonance (1969) 34, 443-447 (1979).
42 Goetz, J. M. & Schaefer, J. REDOR Dephasing by Multiple Spins in the Presence of Molecular Motion. Journal of Magnetic Resonance 127, 147-154 (1997).
43 Goetz, J. M., Wu, J. H., Yee, A. F. & Schaefer, J. Two-Dimensional Transferred-Echo Double Resonance Study of Molecular Motion in a Fluorinated Polycarbonate. Solid State Nuclear Magnetic Resonance 12, 87-95 (1998).
44 Gullion, T. & Schaefer, J. Rotational-Echo, Double-Resonance NMR. J. Magn. Reson 81, 196-200 (1989).
45 Stoumpos, C. C. et al. Ruddlesden–Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. Chemistry of Materials 28, 2852-2867 (2016).