1. L. Z. X. Angeli S, Lin X, Genetic of Hearing and defness. Anat Rec. 40, 1291–1296 (2015).
2. G. S. G. Géléoc, J. R. Holt, Sound strategies for hearing restoration. Science (80-. ). 344 (2014), doi:10.1126/science.1241062.
3. U. Müller, P. G. Barr-Gillespie, New treatment options for hearing loss. Nat. Rev. Drug Discov. 14, 346–365 (2015).
4. C. Askew, C. Rochat, B. Pan, Y. Asai, H. Ahmed, E. Child, B. L. Schneider, P. Aebischer, J. R. Holt, Tmc gene therapy restores auditory function in deaf mice. Sci. Transl. Med. 7, 1–12 (2015).
5. C. A. Nist-Lund, B. Pan, A. Patterson, Y. Asai, T. Chen, W. Zhou, H. Zhu, S. Romero, J. Resnik, D. B. Polley, G. S. Géléoc, J. R. Holt, Improved TMC1 gene therapy restores hearing and balance in mice with genetic inner ear disorders. Nat. Commun. 10, 1–14 (2019).
6. A. Ponnath, F. F. Depreux, F. M. Jodelka, F. Rigo, H. E. Farris, M. L. Hastings, J. J. Lentz, Rescue of Outer Hair Cells with Antisense Oligonucleotides in Usher Mice Is Dependent on Age of Treatment. JARO - J. Assoc. Res. Otolaryngol. 19, 1–16 (2018).
7. S. B. Shibata, P. T. Ranum, H. Moteki, B. Pan, A. T. Goodwin, S. S. Goodman, P. J. Abbas, J. R. Holt, R. J. H. Smith, RNA Interference Prevents Autosomal-Dominant Hearing Loss. Am. J. Hum. Genet. 98, 1101–1113 (2016).
8. J. A. Zuris, D. B. Thompson, Y. Shu, J. P. Guilinger, J. L. Bessen, J. H. Hu, M. L. Maeder, J. K. Joung, Z. Y. Chen, D. R. Liu, Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33, 73–80 (2015).
9. H. Yin, C. Q. Song, J. R. Dorkin, L. J. Zhu, Y. Li, Q. Wu, A. Park, J. Yang, S. Suresh, A. Bizhanova, A. Gupta, M. F. Bolukbasi, S. Walsh, R. L. Bogorad, G. Gao, Z. Weng, Y. Dong, V. Koteliansky, S. A. Wolfe, R. Langer, W. Xue, D. G. Anderson, Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 34, 328–333 (2016).
10. Y. Yang, L. Wang, P. Bell, D. McMenamin, Z. He, J. White, H. Yu, C. Xu, H. Morizono, K. Musunuru, M. L. Batshaw, J. M. Wilson, A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat. Biotechnol. 34, 334–338 (2016).
11. C. Long, C. Long, L. Amoasii, A. A. Mireault, J. R. Mcanally, H. Li, E. Sanchez-, S. Bhattacharyya, J. M. Shelton, R. Bassel-duby, E. N. Olson, Science-2015-Long-science.aad5725. 5725 (2015).
12. S. Kim, D. Kim, S. W. Cho, J. Kim, J. S. Kim, Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012–1019 (2014).
13. X. Gao, Y. Tao, V. Lamas, M. Huang, W. Yeh, B. Pan, Y. Hu, J. H. Hu, D. B. Thompson, Y. Shu, H. Wang, S. Yang, Q. Xu, D. B. Polley, M. Charles, W. Kong, J. R. Holt, Z. Chen, D. R. Liu, Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. 553, 217–221 (2018).
14. B. György, C. Nist-Lund, B. Pan, Y. Asai, K. D. Karavitaki, B. P. Kleinstiver, S. P. Garcia, M. P. Zaborowski, P. Solanes, S. Spataro, B. L. Schneider, J. K. Joung, G. S. G. Géléoc, J. R. Holt, D. P. Corey, Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nat. Med. 25, 1123–1130 (2019).
15. W. H. Yeh, O. Shubina-Oleinik, J. M. Levy, B. Pan, G. A. Newby, M. Wornow, R. Burt, J. C. Chen, J. R. Holt, D. R. Liu, In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci. Transl. Med. 12 (2020), doi:10.1126/scitranslmed.aay9101.
16. C. C. Morton, W. E. Nance, Newborn Hearing Screening — A Silent Revolution. N. Engl. J. Med. 354, 2151–2164 (2006).
17. R. A. Dumont, U. Lins, A. G. Filoteo, J. T. Penniston, B. Kachar, P. G. Gillespie, Plasma membrane Ca2+-ATPase isoform 2a is the PMCA of hair bundles. J. Neurosci. 21, 5066–78 (2001).
18. J. M. Schultz, Y. Yang, A. J. Caride, A. G. Filoteo, A. R. Penheiter, A. Lagziel, R. J. Morell, S. A. Mohiddin, L. Fananapazir, A. C. Madeo, J. T. Penniston, A. J. Griffith, Modification of Human Hearing Loss by Plasma-Membrane Calcium Pump PMCA2. N. Engl. J. Med. 352, 1557–1564 (2005).
19. J. J. Smits, J. Oostrik, A. J. Beynon, S. G. Kant, P. A. M. de Koning Gans, L. J. C. Rotteveel, J. S. Klein Wassink-Ruiter, R. H. Free, S. M. Maas, J. van de Kamp, P. Merkus, W. Koole, I. Feenstra, R. J. C. Admiraal, C. P. Lanting, M. Schraders, H. G. Yntema, R. J. E. Pennings, H. Kremer, De novo and inherited loss-of-function variants of ATP2B2 are associated with rapidly progressive hearing impairment. Hum. Genet. 138, 61–72 (2019).
20. S. L. Spiden, M. Bortolozzi, F. Di Leva, M. H. de Angelis, H. Fuchs, D. Lim, S. Ortolano, N. J. Ingham, M. Brini, E. Carafoli, F. Mammano, K. P. Steel, The novel mouse mutation Oblivion inactivates the PMCA2 pump and causes progressive hearing loss. PLoS Genet. 4, e1000238 (2008).
21. A. Pandya, K. S. Arnos, X. J. Xia, K. O. Welch, S. H. Blanton, T. B. Friedman, G. Garcia Sanchez, X. Z. Liu, R. Morell, W. E. Nance, Frequency and distribution of GJB2 (connexin 26) and GJBG (connexin 30) mutations in a large North American repository of deaf probands. Genet. Med. 5, 295–303 (2003).
22. X. Z. Liu, Y. Yuan, D. Yan, E. H. Ding, X. M. Ouyang, Y. Fei, W. Tang, H. Yuan, Q. Chang, L. L. Du, X. Zhang, G. Wang, S. Ahmad, D. Y. Kang, X. Lin, P. Dai, Digenic inheritance of non-syndromic deafness caused by mutations at the gap junction proteins Cx26 and Cx31. Hum. Genet. 125, 53–62 (2009).
23. M. Li, S. ya Nishio, C. Naruse, M. Riddell, S. Sapski, T. Katsuno, T. Hikita, F. Mizapourshafiyi, F. M. Smith, L. T. Cooper, M. G. Lee, M. Asano, T. Boettger, M. Krueger, A. Wietelmann, J. Graumann, B. W. Day, A. W. Boyd, S. Offermanns, S. ichiro Kitajiri, S. ichi Usami, M. Nakayama, Digenic inheritance of mutations in EPHA2 and SLC26A4 in Pendred syndrome. Nat. Commun. 11 (2020), doi:10.1038/s41467-020-15198-9.
24. Q. Y. Zheng, D. Yan, X. M. Ouyang, L. L. Du, H. Yu, B. Chang, K. R. Johnson, X. Z. Liu, B. Harbor, Digenic inheritance of deafness caused by mutations in genes encoding cadherin 23 and protocadherin 15 in mice and humans. 14, 103–111 (2010).
25. F. Kalinec, G. Kalinec, M. Boukhvalova, B. Kachar, Cell Biology International 1999 KALINEC. 23, 175–184 (1999).
26. S. Q. Tsai, Z. Zheng, N. T. Nguyen, M. Liebers, V. Ved, V. Thapar, N. Wyvekens, C. Khayter, A. J. Iafrate, P. Le, M. J. Aryee, J. K. Joung, P. Unit, M. G. Hospital, M. G. Hospital, K. Institutet, GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. 33, 187–197 (2015).
27. A. C. Komor, A. H. Badran, D. R. Liu, CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell. 169, 559 (2017).
28. F. Zhang, CRISPR DESIGN. http://crispr.mit.edu (2015).
29. T. Calì, M. Brini, E. Carafoli, Regulation of Cell Calcium and Role of Plasma Membrane Calcium ATPases. Int. Rev. Cell Mol. Biol. 332, 259–296 (2017).
30. P. Dai, L. H. Huang, G. J. Wang, X. Gao, C. Y. Qu, X. W. Chen, F. R. Ma, J. Zhang, W. L. Xing, S. Y. Xi, B. R. Ma, Y. Pan, X. H. Cheng, H. Duan, Y. Y. Yuan, L. P. Zhao, L. Chang, R. Z. Gao, H. H. Liu, W. Zhang, S. S. Huang, D. Y. Kang, W. Liang, K. Zhang, H. Jiang, Y. L. Guo, Y. Zhou, W. X. Zhang, F. Lyu, Y. N. Jin, Z. Zhou, H. L. Lu, X. Zhang, P. Liu, J. Ke, J. S. Hao, H. M. Huang, D. Jiang, X. Ni, M. Long, L. Zhang, J. Qiao, C. C. Morton, X. Z. Liu, J. Cheng, D. M. Han, Concurrent Hearing and Genetic Screening of 180,469 Neonates with Follow-up in Beijing, China. Am. J. Hum. Genet. 105, 803–812 (2019).
31. D. Kooshavar, M. A. Tabatabaiefar, E. Farrokhi, M. Abolhasani, M. R. Noori-Daloii, M. Hashemzadeh-Chaleshtori, Digenic inheritance in autosomal recessive non-syndromic hearing loss cases carrying GJB2 heterozygote mutations: Assessment of GJB4, GJA1, and GJC3. Int. J. Pediatr. Otorhinolaryngol. 77, 189–193 (2013).
32. I. J. Russell, Cochlear Receptor Potentials. Senses A Compr. Ref. 3, 319–358 (2008).
33. G. Cullot, J. Boutin, J. Toutain, F. Prat, P. Pennamen, C. Rooryck, M. Teichmann, E. Rousseau, I. Lamrissi-Garcia, V. Guyonnet-Duperat, A. Bibeyran, M. Lalanne, V. Prouzet-Mauléon, B. Turcq, C. Ged, J. M. Blouin, E. Richard, S. Dabernat, F. Moreau-Gaudry, A. Bedel, CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat. Commun. 10, 1–14 (2019).
34. M. Kosicki, K. Tomberg, A. Bradley, Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).
35. A. Korablev, V. Lukyanchikova, I. Serova, N. Battulin, On-target CRISPR/CAS9 activity can cause undesigned large deletion in mouse zygotes. Int. J. Mol. Sci. 21, 16–18 (2020).