Achari AE, Coqueret X, Lablache-Combier A, Loucheux C (1993) Preparation of polyvinylamine from polyacrylamide: a reinvestigation of the hofmann reaction. Die Makromolekulare Chemie. Macromolecular Chemistry and Physics 194:1879-1891. https://doi.org/10.1002/macp.1993.021940703
Araki J, Iida M (2016) Surface carboxylation of cellulose nanowhiskers using mPEG-TEMPO: its recovery and recycling. Polymer Journal 48:1029-1033. https://doi.org/10.1038/pj.2016.65
Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids and Surfaces A: Physicochemical and Engineering Aspects 142:75-82. https://doi.org/10.1016/S0927-7757(98)00404-X
Biliuta G, Fras L, Drobota M, Persin Z, Kreze T, Stana-Kleinschek K, Ribitsch V, Harabagiu V, Coseri S (2013) Comparison study of TEMPO and phthalimide-N-oxyl (PINO) radicals on oxidation efficiency toward cellulose. Carbohydrate polymers 91:502-507. https://doi.org/10.1016/j.carbpol.2012.08.047
Coseri S, Nistor G, Fras L, Strnad S, Harabagiu V, Simionescu BC (2009) Mild and selective oxidation of cellulose fibers in the presence of N-hydroxyphthalimide. Biomacromolecules 10:2294-2299. https://doi.org/10.1021/bm9004854
Coseri S, Biliuta G, Simionescu BC, Stana-Kleinschek K, Ribitsch V, Harabagiu V (2013) Oxidized cellulose-Survey of the most recent achievements. Carbohydrate polymers 93:207-215. https://doi.org/10.1016/j.carbpol.2012.03.086
Coseri S, Biliuta G, Zemljič LF, Srndovic JS, Larsson PT, Strnad S, Kreže T, Naderi A, Lindström, T (2015) One-shot carboxylation of microcrystalline cellulose in the presence of nitroxyl radicals and sodium periodate. RSC advances 5:85889-85897. https://doi.org/10.1039/C5RA16183E
Coseri S (2017) Cellulose: To depolymerize… or not to? Biotechnology advances 35:251-266. https://doi.org/10.1016/j.biotechadv.2017.01.002
Coseri S, Biliuta G, Simionescu BC (2018) Selective oxidation of cellulose, mediated by N-hydroxyphthalimide, under a metal-free environment. Polymer Chemistry 9:961-967. https://doi.org/10.1039/C7PY01710C
De Nooy AEJ, Besemer AC, Van Bekkum H (1994) Highly selective TEMPO mediated oxidation of primary alcohol groups in polysaccharides. Recueil des Travaux Chimiques des Pays-Bas 113:165-166. https://doi.org/10.1002/recl.19941130307
DiFlavio JL, Pelton R, Leduc M, Champ S, Essig M, Frechen T (2007) The role of mild TEMPO-NaBr-NaClO oxidation on the wet adhesion of regenerated cellulose membranes with polyvinylamine. Cellulose 14:257-268. https://doi.org/10.1007/s10570-006-9104-x
Fu Q, Sutherland A, Gustafsson E, Monsur Ali M, Soleymani L, Pelton R (2017) Relating redox properties of polyvinylamine-g-TEMPO/laccase hydrogel complexes to cellulose oxidation. Langmuir 33:7854-7861. https://doi.org/10.1021/acs.langmuir.7b01460
Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162-165. https://doi.org/10.1021/bm801065u
Guo DM, An QD, Xiao ZY, Zhai SR, Shi Z (2017) Polyethylenimine-functionalized cellulose aerogel beads for efficient dynamic removal of chromium (VI) from aqueous solution. RSC advances 7:54039-54052. https://doi.org/10.1039/C7RA09940A
Hondo H, Saito T, Isogai A (2019) Preparation of oxidized celluloses in a NaBr/NaClO system using 2-azaadamantane N-oxyl (AZADO) derivatives in water at pH 10. Cellulose 26:1479-1487. https://doi.org/10.1007/s10570-018-2177-5
Hu ZY, Zhang SF, Yang JZ (2004) Study on Some Properties of Aqueous Solutions of Poly (Vinylamine) Chloride. Polymer Materials Science and Engineering 20:107-110. http://dx.chinadoi.cn/10.3321/j.issn:1000-7555.2004.04.027
Hubbe MA, Rojas OJ, Lucia LA, Jung TM (2007) Consequences of the nanoporosity of cellulosic fibers on their streaming potential and their interactions with cationic polyelectrolytes. Cellulose 14:655-671. https://doi.org/10.1007/s10570-006-9098-4
Isogai, T.; Saito, T.; Isogai, A. TEMPO electromediated oxidation of some polysaccharides including regenerated cellulose fiber. Biomacromolecules 2010, 11(6), 1593-1599.
Isogai T, Saito T, Isogai A (2010) TEMPO electromediated oxidation of some polysaccharides including regenerated cellulose fiber. Biomacromolecules 11:1593-1599. https://doi.org/10.1021/bm1002575
Isogai A, Saito T, Fukuzumi H (2011a) TEMPO-oxidized cellulose nanofibers. nanoscale 3:71-85. https://doi.org/10.1039/C0NR00583E
Isogai T, Saito T, Isogai A (2011b) Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation. Cellulose 18:421-431. https://doi.org/10.1007/s10570-010-9484-9
Isogai A, Hänninen T, Fujisawa S, Saito T (2018) Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions. Progress in Polymer Science 86:122-148. https://doi.org/10.1016/j.progpolymsci.2018.07.007
Jiang J, Ye W, Liu L, Wang Z, Fan Y, Saito T, Isogai A (2017) Cellulose nanofibers prepared using the TEMPO/laccase/O2 system. Biomacromolecules 18:288-294. https://doi.org/10.1021/acs.biomac.6b01682
Jin Y, Edler KJ, Marken F, Scott JL (2014) Voltammetric optimisation of TEMPO-mediated oxidations at cellulose fabric. Green Chemistry 16:3322-3327. https://doi.org/10.1039/C4GC00306C
Jun SH, Park SG, Kang NG (2019) One-pot method of synthesizing TEMPO-oxidized bacterial cellulose nanofibers using immobilized TEMPO for skincare applications. Polymers 11:1044. https://doi.org/10.3390/polym11061044
Liang H, Cao M, Yang D, Sun T, Chu X, Liu S (2020) Polyamidoamine Immobilized TEMPO Mediated Oxidation of Cellulose: Effect of Macromolecular Catalyst Structure on the Reaction Rate, Oxidation Degree and Degradation Degree. Fibers and Polymers 21:1251-1258. https://doi.org/10.1007/s12221-020-9859-y
Liu S, Xing Y, Han J, Tang E (2017) Catalytic oxidation of cellulose with a novel amphiphilic nitroxide block copolymer as a recoverable catalyst. Cellulose 24:3635-3644. https://doi.org/10.1007/s10570-017-1375-x
Liu S, Sun T, Yang D, Cao M, Liang H (2018) Polyacrylic acid supported TEMPO for selective catalytic oxidation of cellulose: recovered by its pH sensitivity. Cellulose 25:5687-5696. https://doi.org/10.1007/s10570-018-2012-z
Liu S, Liang H, Sun T, Yang D, Cao M (2018) A recoverable dendritic polyamidoamine immobilized TEMPO for efficient catalytic oxidation of cellulose. Carbohydrate polymers 202:563-570. https://doi.org/10.1016/j.carbpol.2018.09.016
Liu J (2012) Mechanisms for cellulose-reactive polyvinylamine-graft-tempo adhesive (Doctoral dissertation). Ph.D. Thesis, McMaster University, Canada, http://hdl.handle.net/11375/12245
Liu J, Pelton R, Obermeyer JM, Esser A (2013) Laccase complex with polyvinylamine bearing grafted TEMPO is a cellulose adhesion primer. Biomacromolecules 14:2953-2960. https://doi.org/10.1021/bm4009827
Melone L, Punta C (2013) Metal-free aerobic oxidations mediated by N-hydroxyphthalimide. A concise review. Beilstein journal of organic chemistry 9:1296-1310. http://dx.doi.org/10.3762%2Fbjoc.9.146
Nabar GM, Shenai VA (1970) Studies in chemically modified celluloses. III. Estimation of free carboxylic acid groups in oxycellulose. Journal of Applied Polymer Science 14:1215-1226. https://doi.org/10.1002/app.1970.070140509
Pelton R, Ren P, Liu J, Mijolovic D (2011) Polyvinylamine-graft-TEMPO adsorbs onto, oxidizes, and covalently bonds to wet cellulose. Biomacromolecules 12:942-948. https://doi.org/10.1021/bm200101b
Pelton R (2014) Polyvinylamine: A tool for engineering interfaces. Langmuir 30:15373-15382. https://doi.org/10.1021/la5017214
Quintana E, Roncero MB, Vidal T, Valls C (2017) Cellulose oxidation by Laccase-TEMPO treatments. Carbohydrate polymers 157:1488-1495. https://doi.org/10.1016/j.carbpol.2016.11.033
Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983-1989. https://doi.org/10.1021/bm0497769
Saito T, Shibata I, Isogai A, Suguri N, Sumikawa N (2005) Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohydrate polymers 61:414-419. https://doi.org/10.1016/j.carbpol.2005.05.014
Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687-1691. https://doi.org/10.1021/bm060154s
Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992-1996. https://doi.org/10.1021/bm900414t
Saito T, Hirota M, Tamura N, Isogai A (2010) Oxidation of bleached wood pulp by TEMPO/NaClO/NaClO2 system: effect of the oxidation conditions on carboxylate content and degree of polymerization. Journal of wood science 56:227-232. https://doi.org/10.1007/s10086-009-1092-7
Shenai VA, Sudan RK (1972) Studies in chemically modified celluloses. IV. Lactones in chemically modified celluloses. Journal of Applied Polymer Science 16:545-550. https://doi.org/10.1002/app.1972.070160301
Shi SX, Pelton R, Fu Q, Yang ST (2014) Comparing polymer-supported TEMPO mediators for cellulose oxidation and subsequent polyvinylamine grafting. Industrial & Engineering Chemistry Research 53: 4748-4754. https://doi.org/10.1021/ie500280e
Shibata I, Isogai A (2003) Depolymerization of cellouronic acid during TEMPO-mediated oxidation. Cellulose 10:151-158. https://doi.org/10.1023/A:1024051514026
Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842-849. https://doi.org/10.1021/bm2017542
Takaichi S, Isogai A (2013) Oxidation of wood cellulose using 2-azaadamantane N-oxyl (AZADO) or 1-methyl-AZADO catalyst in NaBr/NaClO system. Cellulose 20:1979-1988. https://doi.org/10.1007/s10570-013-9932-4
Takaichi S, Hiraoki R, Inamochi T, Isogai A (2014) One-step preparation of 2, 3, 6-tricarboxy cellulose. Carbohydrate polymers 110:499-504. https://doi.org/10.1016/j.carbpol.2014.03.085
Tanaka R, Saito T, Isogai A (2012) Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8. International Journal of Biological Macromolecules 51:228-234. https://doi.org/10.1016/j.ijbiomac.2012.05.016
Wang CY, Wu ZH (2002) The synthesis of the low-molecular-weight polyacrylamide by precipitation polymerization. Journal-Fujian Teachers University Natural Science Edition 18:61-63. http://dx.chinadoi.cn/10.3969/j.issn.1000-5277.2002.04.014
Yang, D., Stimpson, T. C., Soucy, J., Esser, A., & Pelton, R. H. (2019). Increasing wet adhesion between cellulose surfaces with polyvinylamine. Cellulose, 26(1), 341-353. https://doi.org/10.1007/s10570-018-2165-9
Yu Y, Wang Q, Yuan J, Fan X, Wang P, Cui L (2016) Hydrophobic modification of cotton fabric with octadecylamine via laccase/TEMPO mediated grafting. Carbohydrate polymers 137:549-555. https://doi.org/10.1016/j.carbpol.2015.11.026
Yui Y, Tanaka C, Isogai A (2013) Functionalization of cotton fabrics by TEMPO-mediated oxidation. SEN-I GAKKAISHI 69:222-228. https://doi.org/10.2115/fiber.69.222
Zhao M, Li J, Mano E, Song Z, Tschaen DM, Grabowski EJ, Reider PJ (1999) Oxidation of primary alcohols to carboxylic acids with sodium chlorite catalyzed by TEMPO and bleach. The Journal of Organic Chemistry 64:2564-2566. https://doi.org/10.1021/jo982143y