1 World Health Organization, World Malaria Report/ https://www.who.int/publications/i/item/9789241565721 (2019).
2 Phillips, M. A. et al. Malaria. Nat Rev Dis Primers 3, 17050, doi:10.1038/nrdp.2017.50 (2017).
3 Chu, C. S. et al. Declining Burden of Declining Burden of Plasmodium vivax in a Population in Northwestern Thailand from 1995 to 2016 before Comprehensive Primaquine Prescription for Radical Cure. Am J Trop Med Hyg 102, 147-150, doi:10.4269/ajtmh.19-0496 (2020).
4 Wells, T. N., Burrows, J. N. & Baird, J. K. Targeting the hypnozoite reservoir of Plasmodium vivax: the hidden obstacle to malaria elimination. Trends Parasitol 26, 145-151, doi:10.1016/j.pt.2009.12.005 (2010).
5 Schmidt, L. H. Comparative efficacies of quinine and chloroquine as companions to primaquine in a curative drug regimen. Am J Trop Med Hyg 30, 20-25, doi:10.4269/ajtmh.1981.30.20 (1981).
6 Dow, G. S. et al. Radical curative efficacy of tafenoquine combination regimens in Plasmodium cynomolgi-infected Rhesus monkeys (Macaca mulatta). Malar J 10, 212, doi:10.1186/1475-2875-10-212 (2011).
7 Price, R. N. et al. Global extent of chloroquine-resistant Plasmodium vivax: a systematic review and meta-analysis. Lancet Infect Dis 14, 982-991, doi:10.1016/S1473-3099(14)70855-2 (2014).
8 Baird, J. K. Resistance to chloroquine unhinges vivax malaria therapeutics. Antimicrob Agents Chemother 55, 1827-1830, doi:10.1128/AAC.01296-10 (2011).
9 Llanos-Cuentas, A. et al. Tafenoquine plus chloroquine for the treatment and relapse prevention of Plasmodium vivax malaria (DETECTIVE): a multicentre, double-blind, randomised, phase 2b dose-selection study. Lancet 383, 1049-1058, doi:10.1016/s0140-6736(13)62568-4 (2014).
10 Chu, C. S. et al. Haemolysis in G6PD Heterozygous Females Treated with Primaquine for Plasmodium vivax Malaria: A Nested Cohort in a Trial of Radical Curative Regimens. PLoS Med 14, e1002224, doi:10.1371/journal.pmed.1002224 (2017).
11 Commons, R. J., McCarthy, J. S. & Price, R. N. Tafenoquine for the radical cure and prevention of malaria: the importance of testing for G6PD deficiency. Med J Aust 212, 152-153.e151, doi:10.5694/mja2.50474 (2020).
12 Campo, B., Vandal, O., Wesche, D. L. & Burrows, J. N. Killing the hypnozoite--drug discovery approaches to prevent relapse in Plasmodium vivax. Pathog Glob Health 109, 107-122, doi:10.1179/2047773215y.0000000013 (2015).
13 Dembele, L. et al. Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures. Nat Med 20, 307-312, doi:10.1038/nm.3461 (2014).
14 Dembele, L. et al. Towards an in vitro model of Plasmodium hypnozoites suitable for drug discovery. PLoS One 6, e18162, doi:10.1371/journal.pone.0018162 (2011).
15 March, S. et al. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens. Nat Protoc 10, 2027-2053, doi:10.1038/nprot.2015.128 (2015).
16 Gural, N. et al. In Vitro Culture, Drug Sensitivity, and Transcriptome of Plasmodium Vivax Hypnozoites. Cell Host Microbe 23, 395-406.e394, doi:10.1016/j.chom.2018.01.002 (2018).
17 Roth, A. et al. A comprehensive model for assessment of liver stage therapies targeting Plasmodium vivax and Plasmodium falciparum. Nat Commun 9, 1837, doi:10.1038/s41467-018-04221-9 (2018).
18 Mikolajczak, S. A. et al. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice. Cell Host Microbe 17, 526-535, doi:10.1016/j.chom.2015.02.011 (2015).
19 Duffy, S. & Avery, V. M. Development and optimization of a novel 384-well anti-malarial imaging assay validated for high-throughput screening. Am J Trop Med Hyg 86, 84-92, doi:10.4269/ajtmh.2012.11-0302 (2012).
20 Antonova-Koch, Y. et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science 362, doi:10.1126/science.aat9446 (2018).
21 Meister, S. et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science 334, 1372-1377, doi:10.1126/science.1211936 (2011).
22 Kuhen, K. L. et al. KAF156 is an antimalarial clinical candidate with potential for use in prophylaxis, treatment, and prevention of disease transmission. Antimicrob Agents Chemother 58, 5060-5067, doi:10.1128/aac.02727-13 (2014).
23 Vivax Sporozoite Consortium. Transcriptome and histone epigenome of Plasmodium vivax salivary-gland sporozoites point to tight regulatory control and mechanisms for liver-stage differentiation in relapsing malaria. Int J Parasitol 49, 501-513, doi:10.1016/j.ijpara.2019.02.007 (2019).
24 Van Voorhis, W. C. et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog 12, e1005763, doi:10.1371/journal.ppat.1005763 (2016).
25 Medicines for Malaria Venture. Pathogen Box Supporting Information. https://www.mmv.org/mmv-open/pathogen-box/pathogen-box-supporting-information (2020).
26 Spangenberg, T. et al. The open access malaria box: a drug discovery catalyst for neglected diseases. PLoS One 8, e62906, doi:10.1371/journal.pone.0062906 (2013).
27 Maher, S. P. et al. An adaptable soft-mold embossing process for fabricating optically-accessible, microfeature-based culture systems and application toward liver stage antimalarial compound testing. Lab Chip 20, 1124-1139, doi:10.1039/c9lc00921c (2020).
28 Chua, A. C. Y. et al. Robust continuous in vitro culture of the Plasmodium cynomolgi erythrocytic stages. Nat Commun 10, 3635, doi:10.1038/s41467-019-11332-4 (2019).
29 Zeeman, A. M. et al. PI4 Kinase Is a Prophylactic but Not Radical Curative Target in Plasmodium vivax-Type Malaria Parasites. Antimicrob Agents Chemother 60, 2858-2863, doi:10.1128/aac.03080-15 (2016).
30 Posfai, D. et al. Plasmodium vivax Liver and Blood Stages Recruit the Druggable Host Membrane Channel Aquaporin-3. Cell Chem Biol 27, 719-727.e715, doi:10.1016/j.chembiol.2020.03.009 (2020).
31 Voorberg-van der Wel, A. M. et al. A dual fluorescent Plasmodium cynomolgi reporter line reveals in vitro malaria hypnozoite reactivation. Commun Biol 3, 7, doi:10.1038/s42003-019-0737-3 (2020).
32 Voorberg-van der Wel, A. M. et al. Dual-Luciferase-Based Fast and Sensitive Detection of Malaria Hypnozoites for the Discovery of Antirelapse Compounds. Anal Chem 92, 6667-6675, doi:10.1021/acs.analchem.0c00547 (2020).
33 Duffy, S. & Avery, V. M. Identification of inhibitors of Plasmodium falciparum gametocyte development. Malar J 12, 408, doi:10.1186/1475-2875-12-408 (2013).
34 Plouffe, D. M. et al. High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission. Cell Host Microbe 19, 114-126, doi:10.1016/j.chom.2015.12.001 (2016).
35 Delves, M. J. et al. A high throughput screen for next-generation leads targeting malaria parasite transmission. Nat Commun 9, 3805, doi:10.1038/s41467-018-05777-2 (2018).
36 Miguel-Blanco, C. et al. Hundreds of dual-stage antimalarial molecules discovered by a functional gametocyte screen. Nat Commun 8, 15160, doi:10.1038/ncomms15160 (2017).
37 Prado, M. et al. Long-term live imaging reveals cytosolic immune responses of host hepatocytes against Plasmodium infection and parasite escape mechanisms. Autophagy 11, 1561-1579, doi:10.1080/15548627.2015.1067361 (2015).
38 Bray MA, Carpenter A., Advanced Assay Development Guidelines for Image-Based High Content Screening and Analysis in Assay Guidance Manual (ed. Markossian S, Sittampalam GS, Grossman A, et al.,) 523 (Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2017).
39 Brunschwig, C. et al. UCT943, a Next-Generation Plasmodium falciparum PI4K Inhibitor Preclinical Candidate for the Treatment of Malaria. Antimicrob Agents Chemother 62, doi:10.1128/AAC.00012-18 (2018).
40 Baragaña, B. et al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature 522, 315-320, doi:10.1038/nature14451 (2015).
41 Camarda, G. et al. Antimalarial activity of primaquine operates via a two-step biochemical relay. Nat Commun 10, 3226, doi:10.1038/s41467-019-11239-0 (2019).
42 Alving, A. S. et al. Potentiation of the curative action of primaquine in vivax malaria by quinine and chloroquine. J Lab Clin Med 46, 301-306 (1955).
43 Dembélé, L. et al. Chloroquine Potentiates Primaquine Activity Against Active and Latent Hepatic Plasmodia. Antimicrob Agents Chemother, doi:10.1128/AAC.01416-20 (2020).
44 Chua, A. C. Y. et al. Hepatic spheroids used as an in vitro model to study malaria relapse. Biomaterials 216, 119221, doi:10.1016/j.biomaterials.2019.05.032 (2019).
45 Zhang, J. H., Chung, T. D. & Oldenburg, K. R. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen 4, 67-73, doi:10.1177/108705719900400206 (1999).
46 Smithson, D. C., Shelat, A. A., Baldwin, J., Phillips, M. A. & Guy, R. K. Optimization of a non-radioactive high-throughput assay for decarboxylase enzymes. Assay Drug Dev Technol 8, 175-185, doi:10.1089/adt.2009.0249 (2010).
47 Delves, M. et al. The activities of current antimalarial drugs on the life cycle stages of Plasmodium: a comparative study with human and rodent parasites. PLoS Med 9, e1001169, doi:10.1371/journal.pmed.1001169 (2012).
48 Paquet, T., Gordon, R., Waterson, D., Witty, M. J. & Chibale, K. Antimalarial aminothiazoles and aminopyridines from phenotypic whole-cell screening of a SoftFocus(®) library. Future Med Chem 4, 2265-2277, doi:10.4155/fmc.12.176 (2012).
49 Marchesini, N., Luo, S., Rodrigues, C. O., Moreno, S. N. & Docampo, R. Acidocalcisomes and a vacuolar H+-pyrophosphatase in malaria parasites. Biochem J 347 Pt 1, 243-253 (2000).
50 Garcia, C. R. et al. Acidic calcium pools in intraerythrocytic malaria parasites. Eur J Cell Biol 76, 133-138, doi:10.1016/S0171-9335(98)80026-5 (1998).
51 Lavine, M. D. & Arrizabalaga, G. Analysis of monensin sensitivity in Toxoplasma gondii reveals autophagy as a mechanism for drug induced death. PLoS One 7, e42107, doi:10.1371/journal.pone.0042107 (2012).
52 Adovelande, J. & Schrével, J. Carboxylic ionophores in malaria chemotherapy: the effects of monensin and nigericin on Plasmodium falciparum in vitro and Plasmodium vinckei petteri in vivo. Life Sci 59, PL309-315, doi:10.1016/s0024-3205(96)00514-0 (1996).
53 Brochet, M. & Billker, O. Calcium signalling in malaria parasites. Mol Microbiol 100, 397-408, doi:10.1111/mmi.13324 (2016).
54 Duffy, S. et al. Screening the Medicines for Malaria Venture Pathogen Box across Multiple Pathogens Reclassifies Starting Points for Open-Source Drug Discovery. Antimicrob Agents Chemother 61, doi:10.1128/AAC.00379-17 (2017).
55 Paquet, T. et al. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci Transl Med 9, doi:10.1126/scitranslmed.aad9735 (2017).
56 Patra, A. T. et al. Whole-Cell Phenotypic Screening of Medicines for Malaria Venture Pathogen Box Identifies Specific Inhibitors of. Antimicrob Agents Chemother 64, doi:10.1128/AAC.01802-19 (2020).
57 Rice, C. A., Lares-Jiménez, L. F., Lares-Villa, F. & Kyle, D. E. Screening of the Open-Source Medicines for Malaria Venture Malaria and Pathogen Boxes To Discover Novel Compounds with Activity against Balamuthia mandrillaris. Antimicrob Agents Chemother 64, doi:10.1128/AAC.02233-19 (2020).
58 Pybus, B. S. et al. The metabolism of primaquine to its active metabolite is dependent on CYP 2D6. Malar J 12, 212, doi:10.1186/1475-2875-12-212 (2013).
59 Rajgor, D. D. et al. Antirelapse Efficacy of Various Primaquine Regimens for Plasmodium vivax. Malar Res Treat 2014, 347018, doi:10.1155/2014/347018 (2014).
60 Marcsisin, S. R. et al. Tafenoquine and NPC-1161B require CYP 2D metabolism for anti-malarial activity: implications for the 8-aminoquinoline class of anti-malarial compounds. Malar J 13, 2, doi:10.1186/1475-2875-13-2 (2014).