[1] Lee, P. A., Nagaosa, N., & Wen, X. G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17 (2006).
[2] Norman, M. R. Materials design for new superconductors. Rep. Prog. Phys. 79, 074502 (2016).
[3] Li, D., Lee, K., Wang, B. Y., Osada, M., Crossley, S., Lee, H. R., Cui, Y., Hikita, Y. & Hwang, H. Y. Superconductivity in an infinite-layer nickelate. Nature 572, 624-627 (2019).
[4] Nobukane, H., Yanagihara, K., Kunisada, Y., Ogasawara, Y., Isono, K., Nomura, K., Takahashi, K., Nomura, T., Akiyama, T. & Tanda, S. Co-appearance of superconductivity and ferromagnetism in a Ca2RuO4 nanofilm crystal. Sci. rep. 10, 3462 (2020).
[5] Mitchell, J. F. Sr2IrO4: Gateway to cuprate superconductivity? APL Mater. 3, 062404 (2015).
[6] Kim, Y. K., Sung, N. H., Denlinger, J. D. & Kim, B. J. Observation of a d-wave gap in electron-doped Sr2IrO4. Nat. Phys. 12, 37–41 (2016).
[7] Ge, J. F., Liu, Z. L., Liu, C., Gao, C. L., Qian, D., Xue, Q. K., Liu, Y. & Jia, J. F. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat. Mater. 14, 285-289 (2014).
[8] Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462-468 (2000).
[9] Markovich, V., Wisniewski, A., & Szymczak, H. Magnetic properties of perovskite manganites and their modifications. In Handbook of Magnetic Materials (Vol. 22, pp. 1-201). Elsevier. (2014).
[10] O’Donnell, J., Andrus, A. E., Oh, S., Colla, E. V. & Eckstein, J. N. Colossal magnetoresistance magnetic tunnel junctions grown by molecular-beam epitaxy. Appl. Phys. Lett. 76, 1914-1916 (2000).
[11] Sawa, A. Resistive switching in transition metal oxides. Mater. Today 11, 28-36 (2008).
[12] Yamada, H., Kawasaki, M. & Tokura, Y. Ru-doped La0.6Sr0.4MnO3 thin films as a coercivity tunable electrode for magnetic tunnel junctions. Appl. Phys. Lett. 86, 192505 (2005).
[13] Shigematsu, K., Chikamatsu, A., Hirose, Y., Fukumura, T. & Hasegawa, T. Enhanced coercivity of half-metallic La0.7Sr0.3MnO3 by Ru substitution under in-plane uniaxial strain. J. Appl. Phys. 111, 07B102 (2012).
[14] Nakamura, M., Morikawa, D., Yu, X., Kagawa, F., Arima, T., Tokura, Y. & Kawasaki, M. Emergence of topological Hall effect in half-metallic manganite thin films by tuning perpendicular magnetic anisotropy. J. Phys. Soc. Jpn. 87, 074704 (2018).
[15] Ke, X., Rzchowski, M. S., Belenky, L. J. & Eom, C. B. Positive exchange bias in ferromagnetic La0.67Sr0.33MnO3 /SrRuO3 bilayers. Appl. Phys. Lett. 84, 5458 (2004).
[16] Ziese, M., Vrejoiu, I., Pippel, E., Esquinazi, P., Hesse, D., Etz, C., Henk, J., Ernst, A., Maznichenko, I. V., Hergert, W. & Mertig, I. Tailoring Magnetic Interlayer Coupling in La0.7Sr0.3MnO3-SrRuO3 Superlattices. Phys. Rev. Lett. 104, 167203 (2010).
[17] Kim, J. W. Choi, Y., Chun, S. H., Haskel, D., Yi, D., Ramesh, R., Liu. J. & Ryan, P. J. Controlling entangled spin-orbit coupling of 5d states with interfacial heterostructure engineering. Phys. Rev. B 97, 094426 (2018).
[18] Yi, D., Flint, C. L., Balakrishnan, P. P., Mahalingam, K., Urwin, B., Vailionis, A., N’Diaye, A. T., Shafer, P., Arenholz, E., Choi, Y., Stone, K. H., Chu, J., Howe, B. M., Liu, J., Fisher, I. R. & Suzuki, Y. Tuning perpendicular magnetic anisotropy by oxygen octahedral rotations in (La1−xSrxMnO 3)/(SrIrO3) superlattices. Phys. Rev. Lett. 119, 077201 (2017).
[19] Urushibara, A., Morimoto, Y., Arima, T., Asamitsu, A., Kido, G., & Tokura, Y. Insulator-metal transition and giant magnetoresistance in La1−xSrxMnO3. Phys. Rev. B 51, 14103 (1995).
[20] Li, L., Richter, C., Mannhart, J., & Ashoori, R. C. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nat. Phys., 7, 762-766 (2011).
[21] Biscaras, J., Bergeal, N., Kushwaha, A., Wolf, T., Rastogi, A., Budhani, R. C., & Lesueur, J. Two-dimensional superconductivity at a Mott insulator/band insulator interface LaTiO3/SrTiO3. Nat. Commun. 1, 89 (2010).
[22] Tinkham, M. Introduction to superconductivity, Dover Publications, Inc., New York (1996).
[23] Abd-Shukor, R. Coherence length versus transition temperature of hydride-based and room temperature superconductors. Results Phys. 25, 104219 (2021).
[24] Hosono, H., Yamamoto, A., Hiramatsu, H., & Ma. Y. Recent advances in iron-based superconductors toward applications. Mater. Today 21, 278-302 (2018).
[25] Baumert, B. A. Barium potassium bismuth oxide: A review. J. Supercond. 8, 175-181 (1995).
[26] Lee, P. A. From high temperature superconductivity to quantum spin liquid: progress in strong correlation physics. Rep. Prog. Phys. 71, 012501 (2007).
[27] Torchinsky, D., Mahmood, F., Bollinger, A., Božović, I. & Gedik, N. Fluctuating charge-density waves in a cuprate superconductor. Nature Mater. 12, 387–391 (2013).
[28] Choi, J., Wang, Q., Jöhr, S., Christensen, N. B., Küspert, J., Bucher, D., Biscette, D. Fischer, M.H., Hücker, M. Kurosawa, T. Momono, N. Oda, M. Ivashko, O. Zimmermann, M. v., Janoschek, M. & Chang, J. Unveiling Unequivocal Charge Stripe Order in a Prototypical Cuprate Superconductor. Phys.Rev. Lett. 128, 207002 (2022).
[29] Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44, 1272-1276 (2011).
[30] Maruyama, S., Sannodo, N., Harada, R., Anada, Y., Takahashi, R., Lippmaa, M. and Matsumoto, Y. Pulsed laser deposition with rapid beam deflection by a galvanometer mirror scanner. Rev. Sci. Instrum. 90, 093901 (2019).