1. McGrath, J., et al., Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev, 2008. 30: p. 67-76.
2. Merikangas, K.R., et al., Lifetime prevalence of mental disorders in U.S. adolescents: results from the National Comorbidity Survey Replication--Adolescent Supplement (NCS-A). J Am Acad Child Adolesc Psychiatry, 2010. 49(10): p. 980-9.
3. Bigdeli, T.B., et al., Genome-Wide Association Studies of Schizophrenia and Bipolar Disorder in a Diverse Cohort of US Veterans. Schizophr Bull, 2021. 47(2): p. 517-529.
4. Bipolar, D., et al., Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell, 2018. 173(7): p. 1705-1715 e16.
5. Craddock, N., M.C. O'Donovan, and M.J. Owen, The genetics of schizophrenia and bipolar disorder: dissecting psychosis. J Med Genet, 2005. 42(3): p. 193-204.
6. Mullins, N., et al., Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet, 2021. 53(6): p. 817-829.
7. Stahl, E.A., et al., Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet, 2019. 51(5): p. 793-803.
8. Barry, G., et al., The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol Psychiatry, 2014. 19(4): p. 486-94.
9. Akula, N., et al., An Integrative Genomic Study Implicates the Postsynaptic Density in the Pathogenesis of Bipolar Disorder. Neuropsychopharmacology, 2016. 41(3): p. 886-95.
10. Schizophrenia Working Group of the Psychiatric Genomics, C., Biological insights from 108 schizophrenia-associated genetic loci. Nature, 2014. 511(7510): p. 421-7.
11. Surmeier, D.J. and R. Foehring, A mechanism for homeostatic plasticity. Nat Neurosci, 2004. 7(7): p. 691-2.
12. Turrigiano, G.G. and S.B. Nelson, Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci, 2004. 5(2): p. 97-107.
13. Turrigiano, G.G. and S.B. Nelson, Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol, 2000. 10(3): p. 358-64.
14. Fernandes, D. and A.L. Carvalho, Mechanisms of homeostatic plasticity in the excitatory synapse. J Neurochem, 2016. 139(6): p. 973-996.
15. Hu, J.H., et al., Homeostatic scaling requires group I mGluR activation mediated by Homer1a. Neuron, 2010. 68(6): p. 1128-42.
16. Norton, N., et al., Mutation screening of the Homer gene family and association analysis in schizophrenia. Am J Med Genet B Neuropsychiatr Genet, 2003. 120B(1): p. 18-21.
17. Szumlinski, K.K., P.W. Kalivas, and P.F. Worley, Homer proteins: implications for neuropsychiatric disorders. Curr Opin Neurobiol, 2006. 16(3): p. 251-7.
18. de Bartolomeis, A., et al., The Homer1 family of proteins at the crossroad of dopamine-glutamate signaling: An emerging molecular "Lego" in the pathophysiology of psychiatric disorders. A systematic review and translational insight. Neurosci Biobehav Rev, 2022. 136: p. 104596.
19. Szumlinski, K.K., et al., Behavioral and neurochemical phenotyping of Homer1 mutant mice: possible relevance to schizophrenia. Genes Brain Behav, 2005. 4(5): p. 273-88.
20. Rietschel, M., et al., Genome-wide association-, replication-, and neuroimaging study implicates HOMER1 in the etiology of major depression. Biol Psychiatry, 2010. 68(6): p. 578-85.
21. Peyrot, W.J. and A.L. Price, Identifying loci with different allele frequencies among cases of eight psychiatric disorders using CC-GWAS. Nat Genet, 2021. 53(4): p. 445-454.
22. Soloviev, M.M., et al., Molecular characterisation of two structurally distinct groups of human homers, generated by extensive alternative splicing. J Mol Biol, 2000. 295(5): p. 1185-200.
23. Thalhammer, A., F. Jaudon, and L.A. Cingolani, Emerging Roles of Activity-Dependent Alternative Splicing in Homeostatic Plasticity. Front Cell Neurosci, 2020. 14: p. 104.
24. Hayashi, M.K., et al., The postsynaptic density proteins Homer and Shank form a polymeric network structure. Cell, 2009. 137(1): p. 159-71.
25. Ciruela, F., M.M. Soloviev, and R.A. McIlhinney, Co-expression of metabotropic glutamate receptor type 1alpha with homer-1a/Vesl-1S increases the cell surface expression of the receptor. Biochem J, 1999. 341 ( Pt 3): p. 795-803.
26. Ciruela, F., et al., Homer-1c/Vesl-1L modulates the cell surface targeting of metabotropic glutamate receptor type 1alpha: evidence for an anchoring function. Mol Cell Neurosci, 2000. 15(1): p. 36-50.
27. Brakeman, P.R., et al., Homer: a protein that selectively binds metabotropic glutamate receptors. Nature, 1997. 386(6622): p. 284-8.
28. Tu, J.C., et al., Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron, 1998. 21(4): p. 717-26.
29. Sala, C., et al., Inhibition of dendritic spine morphogenesis and synaptic transmission by activity-inducible protein Homer1a. J Neurosci, 2003. 23(15): p. 6327-37.
30. Diering, G.H., et al., Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science, 2017. 355(6324): p. 511-515.
31. Hafez, A.K., et al., A bidirectional competitive interaction between circHomer1 and Homer1b within the orbitofrontal cortex regulates reversal learning. Cell Rep, 2022. 38(3): p. 110282.
32. Zimmerman, A.J., et al., A psychiatric disease-related circular RNA controls synaptic gene expression and cognition. Mol Psychiatry, 2020. 25(11): p. 2712-2727.
33. You, X., et al., Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci, 2015. 18(4): p. 603-610.
34. Dai, X., et al., RNA-binding protein trinucleotide repeat-containing 6A regulates the formation of circular RNA circ0006916, with important functions in lung cancer cells. Carcinogenesis, 2018. 39(8): p. 981-992.
35. Glazar, P., P. Papavasileiou, and N. Rajewsky, circBase: a database for circular RNAs. RNA, 2014. 20(11): p. 1666-70.
36. Dell'Orco, M., R.J. Oliver, and N. Perrone-Bizzozero, HuD Binds to and Regulates Circular RNAs Derived From Neuronal Development- and Synaptic Plasticity-Associated Genes. Front Genet, 2020. 11: p. 790.
37. Cortes-Lopez, M. and P. Miura, Emerging Functions of Circular RNAs. Yale J Biol Med, 2016. 89(4): p. 527-537.
38. Dube, U., et al., An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nat Neurosci, 2019. 22(11): p. 1903-1912.
39. Urdanoz-Casado, A., et al., Gender-Dependent Deregulation of Linear and Circular RNA Variants of HOMER1 in the Entorhinal Cortex of Alzheimer's Disease. Int J Mol Sci, 2021. 22(17).
40. Cervera-Carles, L., et al., Assessing circular RNAs in Alzheimer's disease and frontotemporal lobar degeneration. Neurobiol Aging, 2020. 92: p. 7-11.
41. Gray, L.G., et al., Identification of Specific Circular RNA Expression Patterns and MicroRNA Interaction Networks in Mesial Temporal Lobe Epilepsy. Front Genet, 2020. 11: p. 564301.
42. Ravanidis, S., et al., Differentially Expressed Circular RNAs in Peripheral Blood Mononuclear Cells of Patients with Parkinson's Disease. Mov Disord, 2021. 36(5): p. 1170-1179.
43. Young, J.J. and M.L. Shapiro, The orbitofrontal cortex and response selection. Ann N Y Acad Sci, 2011. 1239: p. 25-32.
44. Gremel, C.M. and R.M. Costa, Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nat Commun, 2013. 4: p. 2264.
45. Schoenbaum, G., et al., A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat Rev Neurosci, 2009. 10(12): p. 885-92.
46. Wallis, J.D., Neuronal mechanisms in prefrontal cortex underlying adaptive choice behavior. Ann N Y Acad Sci, 2007. 1121: p. 447-60.
47. Knudsen, E.B. and J.D. Wallis, Closed-Loop Theta Stimulation in the Orbitofrontal Cortex Prevents Reward-Based Learning. Neuron, 2020. 106(3): p. 537-547 e4.
48. Marquardt, K., R. Sigdel, and J.L. Brigman, Corrigendum to "Touch-screen visual reversal learning is mediated by value encoding and signal propagation in the orbitofrontal cortex" [Neurobiol. Learn. Mem. 139 (2017) 179-188]. Neurobiol Learn Mem, 2021. 180: p. 107380.
49. Ragozzino, M.E., The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Ann N Y Acad Sci, 2007. 1121: p. 355-75.
50. Jackowski, A.P., et al., The involvement of the orbitofrontal cortex in psychiatric disorders: an update of neuroimaging findings. Braz J Psychiatry, 2012. 34(2): p. 207-12.
51. Fettes, P., L. Schulze, and J. Downar, Cortico-Striatal-Thalamic Loop Circuits of the Orbitofrontal Cortex: Promising Therapeutic Targets in Psychiatric Illness. Front Syst Neurosci, 2017. 11: p. 25.
52. Lee, H.S. and J.S. Kim, Implication of Electrophysiological Biomarkers in Psychosis: Focusing on Diagnosis and Treatment Response. J Pers Med, 2022. 12(1).
53. Javitt, D.C., et al., A roadmap for development of neuro-oscillations as translational biomarkers for treatment development in neuropsychopharmacology. Neuropsychopharmacology, 2020. 45(9): p. 1411-1422.
54. Cavanagh, J.F., et al., Electrophysiological biomarkers of behavioral dimensions from cross-species paradigms. Transl Psychiatry, 2021. 11(1): p. 482.
55. Marquardt, K., et al., Impaired cognitive flexibility following NMDAR-GluN2B deletion is associated with altered orbitofrontal-striatal function. Neuroscience, 2021. 475: p. 230-245.
56. Brigman, J.L., et al., GluN2B in corticostriatal circuits governs choice learning and choice shifting. Nat Neurosci, 2013. 16(8): p. 1101-10.
57. Buzsaki, G., Large-scale recording of neuronal ensembles. Nat Neurosci, 2004. 7(5): p. 446-51.
58. Turrigiano, G., Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu Rev Neurosci, 2011. 34: p. 89-103.
59. Schroeder, C.E. and P. Lakatos, Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci, 2009. 32(1): p. 9-18.
60. Lakatos, P., et al., Entrainment of neuronal oscillations as a mechanism of attentional selection. Science, 2008. 320(5872): p. 110-3.
61. Varela, F., et al., The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci, 2001. 2(4): p. 229-39.
62. Cavanagh, J.F. and M.J. Frank, Frontal theta as a mechanism for cognitive control. Trends Cogn Sci, 2014. 18(8): p. 414-21.
63. Cohen, M.X., A neural microcircuit for cognitive conflict detection and signaling. Trends Neurosci, 2014. 37(9): p. 480-90.
64. Cavanagh, J.F., et al., Amphetamine alters an EEG marker of reward processing in humans and mice. Psychopharmacology (Berl), 2022. 239(3): p. 923-933.
65. Angelopoulos, E., Brain functional connectivity and the pathophysiology of schizophrenia. Psychiatriki, 2014. 25(2): p. 91-4.
66. Cho, R.Y., R.O. Konecky, and C.S. Carter, Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. Proc Natl Acad Sci U S A, 2006. 103(52): p. 19878-83.
67. Subramaniam, K., et al., Neural signal during immediate reward anticipation in schizophrenia: Relationship to real-world motivation and function. Neuroimage Clin, 2015. 9: p. 153-63.
68. Howes, O.D. and M.M. Nour, Dopamine and the aberrant salience hypothesis of schizophrenia. World Psychiatry, 2016. 15(1): p. 3-4.
69. Cicero, D.C., et al., Aberrant salience, self-concept clarity, and interview-rated psychotic-like experiences. J Pers Disord, 2015. 29(1): p. 79-99.
70. Berridge, K.C. and T.E. Robinson, Liking, wanting, and the incentive-sensitization theory of addiction. Am Psychol, 2016. 71(8): p. 670-679.
71. Ferguson, L.M., et al., Neurons of the Ventral Tegmental Area Encode Individual Differences in Motivational "Wanting" for Reward Cues. J Neurosci, 2020. 40(46): p. 8951-8963.
72. Leeson, V.C., et al., Discrimination learning, reversal, and set-shifting in first-episode schizophrenia: stability over six years and specific associations with medication type and disorganization syndrome. Biol Psychiatry, 2009. 66(6): p. 586-93.
73. Remijnse, P.L., et al., Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive-compulsive disorder. Arch Gen Psychiatry, 2006. 63(11): p. 1225-36.
74. Cao, L., et al., Down-regulation of Homer1b/c protects against chemically induced seizures through inhibition of mTOR signaling. Cell Physiol Biochem, 2015. 35(4): p. 1633-42.
75. Wang, Y., et al., Scaffolding protein Homer1a protects against NMDA-induced neuronal injury. Cell Death Dis, 2015. 6: p. e1843.
76. Bockaert, J., J. Perroy, and F. Ango, The Complex Formed by Group I Metabotropic Glutamate Receptor (mGluR) and Homer1a Plays a Central Role in Metaplasticity and Homeostatic Synaptic Scaling. J Neurosci, 2021. 41(26): p. 5567-5578.
77. Clifton, N.E., et al., Regulation and Function of Activity-Dependent Homer in Synaptic Plasticity. Mol Neuropsychiatry, 2019. 5(3): p. 147-161.
78. Weiler, I.J., et al., Fragile X mental retardation protein is necessary for neurotransmitter-activated protein translation at synapses. Proc Natl Acad Sci U S A, 2004. 101(50): p. 17504-9.
79. Aloisi, E., et al., Altered surface mGluR5 dynamics provoke synaptic NMDAR dysfunction and cognitive defects in Fmr1 knockout mice. Nat Commun, 2017. 8(1): p. 1103.
80. Hengen, K.B., et al., Firing rate homeostasis in visual cortex of freely behaving rodents. Neuron, 2013. 80(2): p. 335-42.
81. Birtoli, B. and D. Ulrich, Firing mode-dependent synaptic plasticity in rat neocortical pyramidal neurons. J Neurosci, 2004. 24(21): p. 4935-40.
82. Collin, T., et al., Activation of metabotropic glutamate receptors induces periodic burst firing and concomitant cytosolic Ca2+ oscillations in cerebellar interneurons. J Neurosci, 2009. 29(29): p. 9281-91.
83. Li, Y., et al., Epileptiform stimulus increases Homer 1a expression to modulate synapse number and activity in hippocampal cultures. J Neurophysiol, 2013. 109(6): p. 1494-504.
84. Benamer, N., et al., GluD1, linked to schizophrenia, controls the burst firing of dopamine neurons. Mol Psychiatry, 2018. 23(3): p. 691-700.
85. Buzsaki, G. and A. Draguhn, Neuronal oscillations in cortical networks. Science, 2004. 304(5679): p. 1926-9.
86. Balleine, B.W., M.R. Delgado, and O. Hikosaka, The role of the dorsal striatum in reward and decision-making. J Neurosci, 2007. 27(31): p. 8161-5.
87. Tsujimoto, T., H. Shimazu, and Y. Isomura, Direct recording of theta oscillations in primate prefrontal and anterior cingulate cortices. J Neurophysiol, 2006. 95(5): p. 2987-3000.
88. von Stein, A., C. Chiang, and P. Konig, Top-down processing mediated by interareal synchronization. Proc Natl Acad Sci U S A, 2000. 97(26): p. 14748-53.
89. Huerta, P.T. and J.E. Lisman, Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature, 1993. 364(6439): p. 723-5.
90. Buzsaki, G., Theta oscillations in the hippocampus. Neuron, 2002. 33(3): p. 325-40.
91. Roach, B.J., et al., Theta Phase Synchrony Is Sensitive to Corollary Discharge Abnormalities in Early Illness Schizophrenia but Not in the Psychosis Risk Syndrome. Schizophr Bull, 2021. 47(2): p. 415-423.
92. Caixeta, F.V., et al., Ketamine alters oscillatory coupling in the hippocampus. Sci Rep, 2013. 3: p. 2348.
93. Takahashi, Y.K., et al., Expectancy-related changes in firing of dopamine neurons depend on orbitofrontal cortex. Nat Neurosci, 2011. 14(12): p. 1590-7.
94. Bachmann, C., et al., Firing rate homeostasis counteracts changes in stability of recurrent neural networks caused by synapse loss in Alzheimer's disease. PLoS Comput Biol, 2020. 16(8): p. e1007790.
95. Brigman, J.L., et al., Impaired discrimination learning in mice lacking the NMDA receptor NR2A subunit. Learn Mem, 2008. 15(2): p. 50-4.
96. Liu, C.X. and L.L. Chen, Circular RNAs: Characterization, cellular roles, and applications. Cell, 2022. 185(12): p. 2016-2034.