[1] I.A. Yoon, K.B. Hong, H.J. Lee, K.W. Yun, J.Y. Park, Y.H. Choi, W.S. Kim, H. Lee, B.W. Eun, Y.M. Ahn, E.Y. Cho, H.J. Cho, E.H. Choi, Radiologic findings as a determinant and no effect of macrolide resistance on clinical course of Mycoplasma pneumoniae pneumonia, BMC infectious diseases, 17 (2017) 402.
[2] Y. Zhang, Y. Zhou, S. Li, D. Yang, X. Wu, Z. Chen, The Clinical Characteristics and Predictors of Refractory Mycoplasma pneumoniae Pneumonia in Children, PloS one, 11 (2016) e0156465.
[3] L. Wang, S. Lu, Z. Feng, L. Li, B. Niu, J. Shuai, L. Cao, G. Li, J. Liu, The early examination of combined serum and imaging data under flexible fiberoptic bronchoscopy as a novel predictor for refractory Mycoplasma pneumoniae pneumonia diagnosis, Medicine, 96 (2017) e9364.
[4] J.J. Xu, L.H. Shu, [Clinical characteristics of refractory Mycoplasma pneumoniae pneumonia in children], Zhongguo dang dai er ke za zhi = Chinese journal of contemporary pediatrics, 20 (2018) 37-42.
[5] R. Chaudhry, A. Ghosh, A. Chandolia, Pathogenesis of Mycoplasma pneumoniae: An update, Indian journal of medical microbiology, 34 (2016) 7-16.
[6] J.A.S. Quaresma, Organization of the Skin Immune System and Compartmentalized Immune Responses in Infectious Diseases, Clinical microbiology reviews, 32 (2019).
[7] M.E. Bianchi, M.P. Crippa, A.A. Manfredi, R. Mezzapelle, P. Rovere Querini, E. Venereau, High-mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair, Immunological reviews, 280 (2017) 74-82.
[8] F. Pandolfi, S. Altamura, S. Frosali, P. Conti, Key Role of DAMP in Inflammation, Cancer, and Tissue Repair, Clinical therapeutics, 38 (2016) 1017-1028.
[9] Y. Liu, X. Zhang, Y. Wang, C. Zhu, M. Fan, X. Dou, C. Hao, Y. Yan, W. Ji, G. Gu, J. Lou, Z. Chen, The role of granulocyte macrophage colony stimulating factor in hospitalized children with Mycoplasma pneumoniae pneumonia, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy, 24 (2018) 789-794.
[10] J. Liu, F. Zhao, J. Lu, H. Xu, H. Liu, X. Tang, H. Yang, J. Zhang, S. Zhao, High Mycoplasma pneumoniae loads and persistent long-term Mycoplasma pneumoniae DNA in lower airway associated with severity of pediatric Mycoplasma pneumoniae pneumonia, BMC infectious diseases, 19 (2019) 1045.
[11] X. Zhang, Z. Chen, W. Gu, W. Ji, Y. Wang, C. Hao, Y. He, L. Huang, M. Wang, X. Shao, Y. Yan, Viral and bacterial co-infection in hospitalised children with refractory Mycoplasma pneumoniae pneumonia, Epidemiology and infection, 146 (2018) 1384-1388.
[12] Y.J. Choi, J.H. Jeon, J.W. Oh, Critical combination of initial markers for predicting refractory Mycoplasma pneumoniae pneumonia in children: a case control study, Respiratory research, 20 (2019) 193.
[13] Y. Xu, L. Yu, C. Hao, Y. Wang, C. Zhu, W. Ji, Y. Li, G. Li, Z. Chen, Y. Yan, Plasma soluble B7-H3 levels for severity evaluation in pediatric patients with Mycoplasma pneumoniae pneumonia, International immunopharmacology, 73 (2019) 163-171.
[14] T.Y. Liu, W.J. Lee, C.M. Tsai, K.C. Kuo, C.H. Lee, K.S. Hsieh, C.H. Chang, Y.T. Su, C.K. Niu, H.R. Yu, Serum lactate dehydrogenase isoenzymes 4 plus 5 is a better biomarker than total lactate dehydrogenase for refractory Mycoplasma pneumoniae pneumonia in children, Pediatrics and neonatology, 59 (2018) 501-506.
[15] S. Cheng, J. Lin, X. Zheng, L. Yan, Y. Zhang, Q. Zeng, D. Tian, Z. Fu, J. Dai, Development and validation of a simple-to-use nomogram for predicting refractory Mycoplasma pneumoniae pneumonia in children, Pediatric pulmonology, (2020).
[16] M. Wang, Y. Wang, Y. Yan, C. Zhu, L. Huang, X. Shao, J. Xu, H. Zhu, X. Sun, W. Ji, Z. Chen, Clinical and laboratory profiles of refractory Mycoplasma pneumoniae pneumonia in children, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 29 (2014) 18-23.
[17] S. Manti, T.J. Harford, C. Salpietro, F. Rezaee, G. Piedimonte, Induction of high-mobility group Box-1 in vitro and in vivo by respiratory syncytial virus, Pediatric research, 83 (2018) 1049-1056.
[18] E.H. Aitken, A. Alemu, S.J. Rogerson, Neutrophils and Malaria, Frontiers in immunology, 9 (2018) 3005.
[19] J. Li, H. Zhu, Y. Bai, C. Ma, G. Zhang, W. Feng, C. Liu, Hemilagglutinin -3 expression in RMPP airway inflammation is associated with mycoplasma pneumoniae load and neutrophils level (in Chinese), Journal of clinical pulmonary medicine, 25 (2020).
[20] L. Agnello, C. Bellia, M. Di Gangi, B. Lo Sasso, L. Calvaruso, G. Bivona, C. Scazzone, P. Dones, M. Ciaccio, Utility of serum procalcitonin and C-reactive protein in severity assessment of community-acquired pneumonia in children, Clinical biochemistry, 49 (2016) 47-50.
[21] O.L. Neeser, T. Vukajlovic, L. Felder, S. Haubitz, A. Hammerer-Lercher, C. Ottiger, B. Mueller, P. Schuetz, C.A. Fux, A high C-reactive protein/procalcitonin ratio predicts Mycoplasma pneumoniae infection, Clinical chemistry and laboratory medicine, 57 (2019) 1638-1646.
[22] C.M. Nascimento-Carvalho, M.R. Cardoso, A. Barral, C.A. Araujo-Neto, S. Guerin, A. Saukkoriipi, M. Paldanius, R. Vainionpaa, P. Lebon, M. Leinonen, O. Ruuskanen, D. Gendrel, Procalcitonin is useful in identifying bacteraemia among children with pneumonia, Scandinavian journal of infectious diseases, 42 (2010) 644-649.
[23] A. Julian-Jimenez, J. Timon Zapata, E.J. Laserna Mendieta, R. Parejo Miguez, M. Flores Chacartegui, P. Gallardo Schall, [Ability of procalcitonin to predict bacteremia in patients with community acquired pneumonia], Medicina clinica, 142 (2014) 285-292.
[24] C. Stockmann, K. Ampofo, J. Killpack, D.J. Williams, K.M. Edwards, C.G. Grijalva, S.R. Arnold, J.A. McCullers, E.J. Anderson, R.G. Wunderink, W.H. Self, A. Bramley, S. Jain, A.T. Pavia, A.J. Blaschke, Procalcitonin Accurately Identifies Hospitalized Children With Low Risk of Bacterial Community-Acquired Pneumonia, Journal of the Pediatric Infectious Diseases Society, 7 (2018) 46-53.
[25] R. Kawamata, K. Yokoyama, M. Sato, M. Goto, Y. Nozaki, T. Takagi, H. Kumagai, T. Yamagata, Utility of serum ferritin and lactate dehydrogenase as surrogate markers for steroid therapy for Mycoplasma pneumoniae pneumonia, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy, 21 (2015) 783-789.
[26] C.Y. Ding, L. Peng, Y.X. Lin, L.H. Yu, D.L. Wang, D.Z. Kang, Elevated Lactate Dehydrogenase Level Predicts Postoperative Pneumonia in Patients with Aneurysmal Subarachnoid Hemorrhage, World neurosurgery, 129 (2019) e821-e830.
[27] Y. Ding, C. Chu, Y. Li, G. Li, X. Lei, W. Zhou, Z. Chen, High expression of HMGB1 in children with refractory Mycoplasma pneumoniae pneumonia, BMC infectious diseases, 18 (2018) 439.
[28] A. Lu, C. Wang, X. Zhang, L. Wang, L. Qian, Lactate Dehydrogenase as a Biomarker for Prediction of Refractory Mycoplasma pneumoniae Pneumonia in Children, Respiratory care, 60 (2015) 1469-1475.
[29] H. Lu, N. Zeng, Q. Chen, Y. Wu, S. Cai, G. Li, F. Li, J. Kong, Clinical prognostic significance of serum high mobility group box-1 protein in patients with community-acquired pneumonia, The Journal of international medical research, (2019) 300060518819381.
[30] W. Song, H. Tan, S. Wang, Y. Zhang, Y. Ding, Association of High Mobility Group Box Protein B1 Gene Polymorphisms with Pneumonia Susceptibility and Severity, Genetic testing and molecular biomarkers, 23 (2019) 3-11.
[31] T. Suzuki, C. McCarthy, B.C. Carey, M. Borchers, D. Beck, K.A. Wikenheiser-Brokamp, D. Black, C. Chalk, B.C. Trapnell, Increased Pulmonary GM-CSF Causes Alveolar Macrophage Accumulation. Mechanistic Implications for Desquamative Interstitial Pneumonitis, American journal of respiratory cell and molecular biology, 62 (2020) 87-94.