1. Morrone J. Evolutionary Biogeography: An Integrative Approach with Case Studies.
Columbia University Press; 2009.
2. Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, et al. Amazonia
through time: Andean uplift, climate change, landscape evolution, and biodiversity.
Science. 2010;330:927–31.
3. Montes C, Cardona A, Jaramillo C, Pardo A, Silva JC, Valencia V, et al. Middle
Miocene closure of the Central American Seaway. Science. 2015;348:226–9.
4. Potter PE, Szatmari P. Global Miocene tectonics and the modern world. Earth-Sci
Rev. 2009;96:279–95.
5. Santos JC, Coloma LA, Summers K, Caldwell JP, Ree R, Cannatella DC. Amazonian amphibian
diversity is primarily derived from late Miocene Andean lineages. PLoS Biol. 2009;7:e56.
6. Castroviejo-Fisher S, Guayasamin JM, Gonzalez-Voyer A, Vilà C. Neotropical diversification
seen through glassfrogs. J Biogeogr. 2014;41:66–80.
7. Lisa De-Silva D, Mota LL, Chazot N, Mallarino R, Silva-Brandão KL, Piñerez LMG,
et al. North Andean origin and diversification of the largest ithomiine butterfly
genus. Sci Rep. 2017;7:45966.
8. Contreras-Ortiz N, Atchison GW, Hughes CE, Madriňán S. Convergent evolution of
high elevation plant growth forms and geographically structured variation in Andean
Lupinus (Fabaceae). Bot J Linn Soc. 2018;187:118–36.
9. Hazzi NA, Moreno JS, Ortiz-Movliav C, Palacio RD. Biogeographic regions and events
of isolation and diversification of the endemic biota of the tropical Andes. Proc
Natl Acad Sci U S A. 2018;115:7985–90.
10. Weissing FJ, Edelaar P, van Doorn GS. Adaptive speciation theory: a conceptual
review. Behav Ecol Sociobiol. 2011;65:461–80.
11. Garrison RW, von Ellenrieder N, Louton JA. Damselfly Genera of the New World:
An Illustrated and Annotated Key to the Zygoptera. Johns Hopkins University Press;
2010.
12. Sánchez Herrera M, Kuhn WR, Lorenzo-Carballa MO, Harding KM, Ankrom N, Sherratt
TN, et al. Mixed signals? Morphological and molecular evidence suggest a color polymorphism
in some neotropical polythore damselflies. PLoS One. 2015;10:e0125074.
13. Sanchez Herrera M, Beatty C, Nunes R, Realpe E, Salazar C, Ware JL. A molecular
systematic analysis of the Neotropical banner winged damselflies (Polythoridae: Odonata):
Phylogenetic relationships of Polythoridae. Syst Entomol. 2018;43:56–67.
14. Ree RH, Sanmartín I. Conceptual and statistical problems with the DEC+J model
of founder-event speciation and its comparison with DEC via model selection. J Biogeogr.
2018;45:741–9.
15. Antonelli A, Zizka A, Carvalho FA, Scharn R, Bacon CD, Silvestro D, et al. Amazonia
is the primary source of Neotropical biodiversity. Proc Natl Acad Sci U S A. 2018;115:6034–9.
16. Antonelli A, Daniel Kissling W, Flantua SGA, Bermúdez MA, Mulch A, Muellner-Riehl
AN, et al. Geological and climatic influences on mountain biodiversity. Nat Geosci.
2018;11:718.
17. Bacon CD, Velásquez-Puentes FJ, Hoorn C, Antonelli A. Iriarteeae palms tracked
the uplift of Andean Cordilleras. J Biogeogr. 2018;45:1653–63.
18. Chazot N, De-Silva DL, Willmott KR, Freitas AVL, Lamas G, Mallet J, et al. Contrasting
patterns of Andean diversification among three diverse clades of Neotropical clearwing
butterflies. Ecol Evol. 2018;8:3965–82.
19. Kronforst MR, Young LG, Kapan DD, McNeely C, O’Neill RJ, Gilbert LE. Linkage of
butterfly mate preference and wing color preference cue at the genomic location of
wingless. Proc Natl Acad Sci U S A. 2006;103:6575–80.
20. Cooper IA. Ecology of sexual dimorphism and clinal variation of coloration in
a damselfly. Am Nat. 2010;176:566–72.
21. Moore MP, Lis C, Gherghel I, Martin RA. Temperature shapes the costs, benefits
and geographic diversification of sexual coloration in a dragonfly. Ecol Lett. 2019;22:437–46.
22. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious
Basic: an integrated and extendable desktop software platform for the organization
and analysis of sequence data. Bioinformatics. 2012;28:1647–9.
23. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements
in performance and usability. Mol Biol Evol. 2013;30:772–80.
25. Kjer KM. Use of rRNA secondary structure in phylogenetic studies to identify homologous
positions: an example of alignment and data presentation from the frogs. Mol Phylogenet
Evol. 1995;4:314–30.
26. Kjer KM, Honeycutt RL. Site specific rates of mitochondrial genomes and the phylogeny
of eutheria. BMC Evol Biol. 2007;7:8.
27. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti
and the BEAST 1.7. Mol Biol Evol. 2012;29:1969–73.
28. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective
stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol.
2015;32:268–74.
29. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarisation in
Bayesian phylogenetics using Tracer 1.7. Syst Biol. 2018. doi:
10.1093/sysbio/syy032
.
30. Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. ggtree : an r package for visualization
and annotation of phylogenetic trees with their covariates and other associated data.
Methods Ecol Evol. 2017;8:28–36.
31. Paradis E, Claude J, Strimmer K. APE: Analyses of Phylogenetics and Evolution
in R language. Bioinformatics. 2004;20:289–90.
32. Matzke NJ. Probabilistic Historical Biogeography: New Models for Founder-Event
Speciation, Imperfect Detection, and Fossils Allow Improved Accuracy and Model-Testing.
2013.
33. Yu Y, Harris AJ, Blair C, He X. RASP (Reconstruct Ancestral State in Phylogenies):
a tool for historical biogeography. Mol Phylogenet Evol. 2015;87:46–9.
34. Ronquist F. Dispersal-Vicariance Analysis: A New Approach to the Quantification
of Historical Biogeography. Syst Biol. 1997;46:195–203.
35. Yu Y, Harris AJ, He X. S-DIVA (Statistical Dispersal-Vicariance Analysis): A tool
for inferring biogeographic histories. Mol Phylogenet Evol. 2010;56:848–50.
36. Ree RH, Smith SA. Maximum likelihood inference of geographic range evolution by
dispersal, local extinction, and cladogenesis. Syst Biol. 2008;57:4–14.
37. Landis MJ, Matzke NJ, Moore BR, Huelsenbeck JP. Bayesian analysis of biogeography
when the number of areas is large. Syst Biol. 2013;62:789–804.
38. Matzke NJ. Model selection in historical biogeography reveals that founder-event
speciation is a crucial process in Island Clades. Syst Biol. 2014;63:951–70.
39. Gregory-Wodzicki KM. Uplift history of the Central and Northern Andes: A review.
Geol Soc Am Bull. 2000;112:1091–105.
40. Höhna S, Landis MJ, Heath TA, Boussau B, Lartillot N, Moore BR, et al. RevBayes:
Bayesian Phylogenetic Inference Using Graphical Models and an Interactive Model-Specification
Language. Syst Biol. 2016;65:726–36.
41. Höhna S, Heath TA, Boussau B, Landis MJ, Ronquist F, Huelsenbeck JP. Probabilistic
graphical model representation in phylogenetics. Syst Biol. 2014;63:753–71.
42. Kass RE, Raftery AE. Bayes Factors. J Am Stat Assoc. 1995;90:773–95.
43. Xie W, Lewis PO, Fan Y, Kuo L, Chen M-H. Improving marginal likelihood estimation
for Bayesian phylogenetic model selection. Syst Biol. 2011;60:150–60.
44. Lartillot N, Philippe H. Computing Bayes factors using thermodynamic integration.
Syst Biol. 2006;55:195–207.
45. May MR, Höhna S, Moore BR. A Bayesian approach for detecting the impact of mass-extinction
events on molecular phylogenies when rates of lineage diversification may vary. Methods
Ecol Evol. 2016;7:947–59.
46. Höhna S. The time-dependent reconstructed evolutionary process with a key-role
for mass-extinction events. J Theor Biol. 2015;380:321–31.