[1] P. A. Wolf, R. D. Abbott, and W. B. Kannel, “Atrial fibrillation as an independent risk factor for stroke: The Framingham study,” Stroke, vol. 22, no. 8, pp. 983–988, 1991, doi: 10.1161/01.STR.22.8.983.
[2] K. Kimura, S. Kazui, K. Minematsu, and T. Yamaguchi, “Hospital-based prospective registration of acute ischemic stroke and transient ischemic attack in Japan,” J. Stroke Cerebrovasc. Dis., vol. 13, no. 1, pp. 1–11, Jan. 2004, doi: 10.1016/j.jstrokecerebrovasdis.2003.11.025.
[3] “Risk Factors for Stroke and Efficacy of Antithrombotic Therapy in Atrial Fibrillation: Analysis of Pooled Data From Five Randomized Controlled Trials,” Arch. Intern. Med., vol. 154, no. 13, pp. 1449–1457, Jul. 1994, doi: 10.1001/archinte.1994.00420130036007.
[4] C. T. January et al., 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: Executive summary: A report of the American College of cardiology/American heart association task force on practice guidelines and the heart rhythm society, vol. 130, no. 23. 2014.
[5] G. B. Moody and R. G. Mark, “a New Method for Detecting Atrial Fibrillation Using R-R Intervals,” a New Method for Detecting Atrial Fibrillation Using R-R Intervals. pp. 227–230, 1983.
[6] K. Tateno and L. Glass, “Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ΔRR intervals,” Med. Biol. Eng. Comput., vol. 39, no. 6, pp. 664–671, 2001, doi: 10.1007/BF02345439.
[7] X. Zhou, H. Ding, B. Ung, E. Pickwell-MacPherson, and Y. Zhang, “Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy,” Biomed. Eng. Online, vol. 13, no. 1, 2014, doi: 10.1186/1475-925X-13-18.
[8] S. Dash, K. H. Chon, S. Lu, and E. A. Raeder, “Automatic real time detection of atrial fibrillation,” Ann. Biomed. Eng., vol. 37, no. 9, pp. 1701–1709, 2009, doi: 10.1007/s10439-009-9740-z.
[9] A. García-Alberola et al., “RR interval variability in irregular monomorphic ventricular tachycardia and atrial fibrillation,” Circulation, vol. 93, no. 2, pp. 295–300, 1996, doi: 10.1161/01.CIR.93.2.295.
[10] T. Anan, K. Sunagawa, H. Araki, and M. Nakamura, “Arrhythmia analysis by successive RR plotting,” J. Electrocardiol., vol. 23, no. 3, pp. 243–248, 1990, doi: https://doi.org/10.1016/0022-0736(90)90163-V.
[11] J. Hayano, S. Sakata, A. Okada, S. Mukai, and T. Fujinami, “Circadian rhythms of atrioventricular conduction properties in chronic atrial fibrillation with and without heart failure,” J. Am. Coll. Cardiol., vol. 31, no. 1, pp. 158–166, 1998, doi: 10.1016/S0735-1097(97)00429-4.
[12] S. Sharifi, A. Pakdel, M. Ebrahimi, J. M. Reecy, S. F. Farsani, and E. Ebrahimie, “Integration of machine learning and metaanalysis identifies the transcriptomic bio-signature of mastitis disease in cattle,” PLoS One, vol. 13, no. 2, pp. 1–18, 2018, doi: 10.1371/journal.pone.0191227.
[13] M. Kisohara, Y. Masuda, E. Yuda, and J. Hayano, “Neural Network Detection of Atrial Fibrillation by Lorenz Plot Images of Interbeat Interval Variation,” IEEE 7th Global Conference on Consumer Electronics, GCCE 2018
[14] Y. Xia, N. Wulan, K. Wang, and H. Zhang, “Detecting atrial fibrillation by deep convolutional neural networks,” Comput. Biol. Med., vol. 93, pp. 84–92, 2018, doi: https://doi.org/10.1016/j.compbiomed.2017.12.007.
[15] X. Fan, Q. Yao, Y. Cai, F. Miao, F. Sun, and Y. Li, “Multiscaled Fusion of Deep Convolutional Neural Networks for Screening Atrial Fibrillation from Single Lead Short ECG Recordings,” IEEE J. Biomed. Heal. Informatics, vol. 22, no. 6, pp. 1744–1753, 2018, doi: 10.1109/JBHI.2018.2858789.
[16] J. Slocum, A. Sahakian, and S. Swiryn, “Diagnosis of atrial fibrillation from surface electrocardiograms based on computer-detected atrial activity,” J. Electrocardiol., vol. 25, no. 1, pp. 1–8, 1992, doi: https://doi.org/10.1016/0022-0736(92)90123-H.
[17] D. E. Lake and J. R. Moorman, “Accurate estimation of entropy in very short physiological time series: The problem of atrial fibrillation detection in implanted ventricular devices,” Am. J. Physiol. - Hear. Circ. Physiol., vol. 300, no. 1, pp. 319–325, 2011, doi: 10.1152/ajpheart.00561.2010.
[18] R. He et al., “Automatic detection of atrial fibrillation based on continuous wavelet transform and 2D convolutional neural networks,” Front. Physiol., vol. 9, no. AUG, pp. 1–11, 2018, doi: 10.3389/fphys.2018.01206.
[19] J. Hayano, M. Kisohara, Y. Yoshida, H. Sakano, and E. Yuda, “Association of heart rate variability with regional difference in senility death ratio: ALLSTAR big data analysis,” SAGE Open Med., vol. 7, p. 205031211985225, 2019, doi: 10.1177/2050312119852259.
[20] J. Hayano, M. Kisohara, Y. Masuda, and E. Yuda. (2019, March). In “Detection of paroxysmal atrial fibrillation by Lorenz plot imaging of ECG RR intervals,” International Forum on Medical Imaging in Asia 2019, SPIE Proceedings Vol. 11050: p. 110501O.
[21] W. W. Flemons and M. R. Littner, “Measuring Agreement Between Diagnostic Devices,” Chest, vol. 124, no. 4, pp. 1535–1542, Oct. 2003, doi: 10.1378/chest.124.4.1535.