1.Zumla AC, J. F. Azhar, E. I. Hui, D. S. Yuen, K. Y.. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov doi:10.1038/nrd.2015.37 (2016).
2.Coleman CM, Frieman MB. Coronaviruses: important emerging human pathogens. J Virol 88(10), 5209–5212 (2014).
3.Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 4(6), 1011–1033 (2012).
4.Qinfen Z, Jinming C, Xiaojun H et al. The life cycle of SARS coronavirus in Vero E6 cells. J Med Virol 73(3), 332–337 (2004).
5.Graham RL, Donaldson EF, Baric RS. A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol 11(12), 836–848 (2013).
6.Bailey-Elkin BA, Knaap RC, Johnson GG et al. Crystal structure of the Middle East respiratory syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression. Journal of Biological Chemistry 289(50), 34667–34682 (2014).
7.Azhar EI, El-Kafrawy SA, Farraj SA et al. Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med 370(26), 2499–2505 (2014).
8.Corman VM, Baldwin HJ, Tateno AF et al. Evidence for an ancestral association of human coronavirus 229E with bats. Journal of virology JVI. 01755–01715 (2015).
9.Han HJ, Yu H, Yu XJ. Evidence for zoonotic origins of Middle East respiratory syndrome coronavirus. The Journal of general virology 97(2), 274–280 (2016).
10.Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. The Lancet 386(9997), 995–1007 (2015).
11.Stadler K, Masignani V, Eickmann M et al. SARS—beginning to understand a new virus. Nat Rev Microbiol 1(3), 209–218 (2003).
12.Yang L. China confirms human-to-human transmission of coronavirus. (2020).
13.Hui DS, I Azhar E, Madani TA et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — The latest 2019 novel coronavirus outbreak in Wuhan, China. International Journal of Infectious Diseases 91 264–266 (2020).
14.Huynh J, Li S, Yount B et al. Evidence supporting a zoonotic origin of human coronavirus strain NL63. Journal of virology 86(23), 12816–12825 (2012).
15.Elfiky AaI, N. S. Anti-SARS and anti-HCV drugs repurposing against the Papain-like protease of the newly emerged coronavirus (2019-nCoV). preprint doi:10.21203/rs.2.23280/v1 (2020).
16.Sharif-Yakan A, Kanj SS. Emergence of MERS-CoV in the Middle East: origins, transmission, treatment, and perspectives. PLoS Pathog 10(12), e1004457 (2014).
17.Elfiky AA, Mahdy SM, Elshemey WM. Quantitative structure-activity relationship and molecular docking revealed a potency of anti-hepatitis C virus drugs against human corona viruses. Journal of Medical Virology 89(6), 1040–1047 (2017).
18.Báez-Santos YM, John SES, Mesecar AD. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral research 115 21–38 (2015).
19.Gonzalez-Grande R, Jimenez-Perez M, Gonzalez Arjona C, Mostazo Torres J. New approaches in the treatment of hepatitis C. World J Gastroenterol 22(4), 1421–1432 (2016).
20.Saleh NA, Elfiky AA, Ezat AA, Elshemey WM, Ibrahim M. The Electronic and Quantitative Structure Activity Relationship Properties of Modified Telaprevir Compounds as HCV NS3 Protease Inhibitors. Journal of Computational and Theoretical Nanoscience 11(2), 544–548 (2014).
21.Tong J, Wang YW, Lu YA. New developments in small molecular compounds for anti-hepatitis C virus (HCV) therapy. J Zhejiang Univ Sci B 13(1), 56–82 (2012).
22.Sarrazin C, Hézode C, Zeuzem S, Pawlotsky J-M. Antiviral strategies in hepatitis C virus infection. Journal of Hepatology 56 S88-S100 (2012).
23.Ezat AA, Elfiky AA, Elshemey WM, Saleh NA. Novel inhibitors against wild-type and mutated HCV NS3 serine protease: an in silico study. VirusDisease doi:10.1007/s13337–019–00516–7 (2019).
24.Nagpal N, Goyal S, Wahi D et al. Molecular principles behind Boceprevir resistance due to mutations in hepatitis C NS3/4A protease. Gene 570(1), 115–121 (2015).
25.Chase R, Skelton A, Xia E et al. A novel HCV NS3 protease mutation selected by combination treatment of the protease inhibitor boceprevir and NS5B polymerase inhibitors. Antiviral research 84(2), 178–184 (2009).
26.Dore GJ, Altice F, Litwin AH et al. Elbasvir–grazoprevir to treat hepatitis C virus infection in persons receiving opioid agonist therapy: a randomized trial. Annals of internal medicine 165(9), 625–634 (2016).
27.Lee H, Lei H, Santarsiero BD et al. Inhibitor recognition specificity of MERS-CoV papain-like protease may differ from that of SARS-CoV. ACS chemical biology 10(6), 1456–1465 (2015).
28.Berman H, Henrick K, Nakamura H. Announcing the worldwide Protein Data Bank. Nat Struct Mol Biol 10(12), 980–980 (2003).
29.Sievers F, Wilm A, Dineen D et al. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular systems biology 7(1), 539 (2011).
30.Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research 42(W1), W320-W324 (2014).
31.The PyMOL Molecular Graphics System, Version 1.7.6 Schrödinger, LLC.
32.Elfiky AA, Elshemey WM. Molecular dynamics simulation revealed binding of nucleotide inhibitors to ZIKV polymerase over 444 nanoseconds. Journal of Medical Virology 90(1), 13–18 (2018).
33.Elfiky AA, Ismail AM. Molecular Modeling and Docking revealed superiority of IDX–184 as HCV polymerase Inhibitor. Future Virology 12(7), 339–347 (2017).
34.Doublie S, Ellenberger T. The mechanism of action of T7 DNA polymerase. Curr Opin Struct Biol 8(6), 704–712 (1998).
35.Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry 31(2), 455–461 (2010).
36.Morris GM, Huey R, Lindstrom W et al. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. Journal of computational chemistry 30(16), 2785–2791 (2009).
37.Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: fully automated protein–ligand interaction profiler. Nucleic acids research 43(W1), W443-W447 (2015).
38.Báez-Santos YM, Mielech AM, Deng X, Baker S, Mesecar AD. Catalytic Function and Substrate Specificity of the Papain-Like Protease Domain of nsp3 from the Middle East Respiratory Syndrome Coronavirus. Journal of Virology 88(21), 12511–12527 (2014).
39.Saleh NA, Ezat AA, Elfiky AA, Elshemey WM, Ibrahim M. Theoretical Study on Modified Boceprevir Compounds as NS3 Protease Inhibitors. Journal of Computational and Theoretical Nanoscience 12(3), 371–375 (2015).
40.Ezat AA, Elshemey WM. A comparative study of the efficiency of HCV NS3/4A protease drugs against different HCV genotypes using in silico approaches. Life Sciences 217 176–184 (2019).