Álvares-Carvalho SV, Vieira TRS, Freitas BAL, et al (2022) Biodiversity hotspots for conservation of Hancornia speciosa Gomes. Genet Resour Crop Evol 69:2179–2189. https://doi.org/10.1007/s10722-022-01368-9
Anjos JRN dos, Charchar MJD, Leite RG, SIlva MS (2009) Levantamento e patogenicidade de fungos associados às sementes de mangaba (Hancornia speciosa Gomes ) no cerrado do Brasil Central. Rev Bras Frutic 31:911–915
Azerêdo GA, Paula RC, Valeri SV (2016) Germinação de sementes de Piptadenia moniliformis Benth. sob estresse hídrico. Cienc Florest 26:193–202
Ballesteros D, Sershen, Varghese B, et al (2014) Uneven drying of zygotic embryos and embryonic axes of recalcitrant seeds: Challenges and considerations for cryopreservation. Cryobiology 69:100–109. https://doi.org/10.1016/j.cryobiol.2014.05.010
Barbedo CJ (2018) A new approach towards the so-called recalcitrant seeds. J Seed Sci 40:221–236. https://doi.org/10.1590/2317-1545v40n3207201
Barros DI, Alcântara Bruno R de L, Nunes HV, et al (2011) Comportamento Fisiológico De Sementes De Mangaba Submetidas À Dessecação 1. Acta Tecnológica 5:31–43. https://doi.org/10.35818/acta.v5i1.19
Berjak P, Pammenter NW (2008) From Avicennia to Zizania: Seed recalcitrance in perspective. Ann Bot 101:213–228. https://doi.org/10.1093/aob/mcm168
Berjak P, Pammenter NW (2013) Implications of the lack of desiccation tolerance in recalcitrant seeds. Front Plant Sci 4:1–9. https://doi.org/10.3389/fpls.2013.00478
Boniecka J, Kotowicz K, Skrzypek E, et al (2019) Potential biochemical, genetic and molecular markers of deterioration advancement in seeds of oilseed rape (Brassica napus L.). Ind Crops Prod 130:478–490. https://doi.org/10.1016/j.indcrop.2018.12.098
Bradford MM (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Biding. Anal Biochem 72:248–254. https://doi.org/https://doi.org/10.1016/0003-2697(76)90527-3
Brasil (2009) Regras para Análise de Sementes. Ministério da Agricultura, Pecuária e Abastecimento (MAPA)
Bueso E, Serrano R, Pallás V, Sánchez-Navarro JA (2017) Seed tolerance to deterioration in arabidopsis is affected by virus infection. Plant Physiol Biochem 116:1–8. https://doi.org/10.1016/j.plaphy.2017.04.020
Chandra J, Dubey M, Keshavkant S (2020) Influence of protein damage and proteasome gene expression in longevity of recalcitrant Madhuca latifolia Roxb . seeds. Botany 98:
Chandra J, Keshavkant S (2018) Desiccation-induced ROS accumulation and lipid catabolism in recalcitrant Madhuca latifolia seeds. Physiol Mol Biol Plants 24:75–87. https://doi.org/10.1007/s12298-017-0487-y
Chandra J, Sershen, Varghese B, Keshavkant S (2019) The Potential of ROS Inhibitors and Hydrated Storage in Improving the Storability of Recalcitrant Madhuca latifolia Seeds . Seed Sci Technol 47:33–45. https://doi.org/10.15258/sst.2019.47.1.04
Colville L, Bradley EL, Lloyd AS, et al (2012) Volatile fingerprints of seeds of four species indicate the involvement of alcoholic fermentation, lipid peroxidation, and Maillard reactions in seed deterioration during ageing and desiccation stress. J Exp Bot 63:6519–6530. https://doi.org/10.1093/jxb/ers307
Conesa A, Götz S (2008) Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:. https://doi.org/10.1155/2008/619832
Coradin L, Camillo J, Pareyn FGC (2018) Espécies Nativas da Flora Brasileira de Valor Econômico Atual ou Potencial Planta para o Futuro: Região Nordeste
De Vitis M, Hay FR, Dickie JB, et al (2020) Seed storage: maintaining seed viability and vigor for restoration use. Restor Ecol 28:S249–S255. https://doi.org/10.1111/rec.13174
Dresch DM, Jeromini TS, Scalon S de PQ, et al (2016) Germination and dessication of Hancornia speciosa Gomes seeds. Biosci J 32:496–504. https://doi.org/10.14393/bj-v32n2a2016-29865
Fajardo CG, Costa DF, Chagas KPT, Vieira F de A (2018) Genetic diversity in natural populations of Hancornia speciosa Gomes: Implications for conservation of genetic resources. Cienc e Agrotecnologia 42:623–630. https://doi.org/10.1590/1413-70542018426019018
Fatokun K, Beckett RP, Varghese B (2022) A Comparison of Water Imbibition and Controlled Deterioration in Five Orthodox Species. Agronomy 12:1486. https://doi.org/10.3390/agronomy12071486
Fazeli-Nasab B, Jami R, Vahabi N, et al (2022) Desiccation Tolerance in Orthodox and Recalcitrant Seeds. In: Plant-Microbe Interactions. CRC Press, pp 265–282
Finch-Savage WE, Bassel GW (2016) Seed vigour and crop establishment: Extending performance beyond adaptation. J Exp Bot 67:567–591. https://doi.org/10.1093/jxb/erv490
Fleming MB, Hill LM, Walters C (2019) The kinetics of ageing in dry-stored seeds : a comparison of viability loss and RNA degradation in unique legacy seed collections. Ann Bot 123:1133–1146. https://doi.org/10.1093/aob/mcy217
Fotouo-M. H, du Toit ES, Robbertse PJ (2015) Germination and ultrastructural studies of seeds produced by a fast-growing, drought-resistant tree: Implications for its domestication and seed storage. AoB Plants 7:1–12. https://doi.org/10.1093/aobpla/plv016
Han B, Berjak P, Pammenter N, et al (1997) The recalcitrant plant species, Castanospermum australe and Trichilia dregeana, differ in their ability to produce dehydrin-related polypeptides during seed maturation and in response to ABA or water-deficit-related stresses. J Exp Bot 48:1717–1726. https://doi.org/10.1093/jxb/48.9.1717
Hara M (2010) The multifunctionality of dehydrins. Plant Signal Behav 5:503–508. https://doi.org/10.4161/psb.11085
Kameswara Rao N, Dulloo ME, Engels JMM (2017) A review of factors that influence the production of quality seed for long-term conservation in genebanks. Genet Resour Crop Evol 64:1061–1074. https://doi.org/10.1007/s10722-016-0425-9
Kleinwächter M, Radwan A, Hara M, Selmar D (2014) Dehydrin expression in seeds: An issue of maturation drying. Front Plant Sci 5:1–3. https://doi.org/10.3389/fpls.2014.00402
Kumar SPJ, Prasad SR, Banerjee R, Thammineni C (2015) Seed birth to death: Dual functions of reactive oxygen species in seed physiology. Ann Bot 116:663–668. https://doi.org/10.1093/aob/mcv098
Lahay RR, Misrun S, Sipayung R (2018) The storage capacity of cocoa seeds (Theobroma cacao L.) through giving Polyethylene Glycol (PEG) in the various of storage container. IOP Conf Ser Earth Environ Sci 122:. https://doi.org/10.1088/1755-1315/122/1/012040
Ledo AS, Vieira-Neto RD, Silva-Júnior JF, et al (2015) A cultura da mangaba. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Brasília, DF.
Lorenzi H (1992) Árvores Brasileiras: Manual de Identificação e Cultivo de Plantas Arbóreas Nativas do Brasil. Plantarum, Nova Odessa, SP
Mahesha HS, Keerthi MC, Shivakumar K V., et al (2022) Development of Biotic Stress Resistant Cowpea. In: Genomic Designing for Biotic Stress Resistant Pulse Crops. Springer, pp 213–251
Marcos-Filho J (2015) Fisiologia de sementes de plantas cultivadas. ABRATES, Londrina
Masetto TE, Scalon SDPQ (2014) Drying and osmotic conditioning in Hancornia speciosa Gomes seeds. Floresta e Ambient 21:62–68. https://doi.org/10.4322/floram.2014.012
Min CW, Lee SH, Cheon YE, et al (2017) In-depth proteomic analysis of Glycine max seeds during controlled deterioration treatment reveals a shift in seed metabolism. J Proteomics 169:125–135. https://doi.org/10.1016/j.jprot.2017.06.022
Mittler R (2017) ROS Are Good. Trends Plant Sci 22:11–19. https://doi.org/10.1016/j.tplants.2016.08.002
Moothoo-Padayachie A, Macdonald A, Varghese B, et al (2018) Uncovering the basis of viability loss in desiccation sensitive Trichilia dregeana seeds using differential quantitative protein expression profiling by iTRAQ. J Plant Physiol 221:119–131. https://doi.org/10.1016/j.jplph.2017.12.011
MOTA DM, SILVA JR JF, SCHMITZ H (2005) Os catadores de mangaba e a conservação da biodiversidade no território sul sergipano. Congr Bras Econ E Sociol Rural 10
Nagel M, Kodde J, Pistrick S, et al (2016) Barley seed aging: Genetics behind the dry elevated pressure of oxygen aging and moist controlled deterioration. Front Plant Sci 7:. https://doi.org/10.3389/fpls.2016.00388
Nguyen TP, Cueff G, Hegedus DD, et al (2015) A role for seed storage proteins in Arabidopsis seed longevity. J Exp Bot 66:6399–6413. https://doi.org/10.1093/jxb/erv348
Nunes V V., Silva-Mann R, Vasconcelos MC, et al (2021) Physical and physiological quality of mangaba seeds obtained by different processing methods. Rev Bras Eng Agric e Ambient 25:429–435. https://doi.org/10.1590/1807-1929/agriambi.v25n6p429-435
Nunes VV, Silva-Mann R, Souza JL, et al (2022a) Physiological and molecular changes in seeds of Hancornia speciosa Gomes in conservative solutions. J Seed Sci 44:1–13
Nunes VV, Silva-Mann R, Souza JL, Calazans CC (2022b) Pharmaceutical, food potential, and molecular data of Hancornia speciosa Gomes: a systematic review. Genet Resour Crop Evol 69:525–543. https://doi.org/10.1007/s10722-021-01319-w
Oliveira RJ de, Silva JEC da, Chagas DB das (2018) Morphology of fruits and seeds and germinate and initial development analysis of Hancornia speciosa. Cerne 24:269–279. https://doi.org/10.1590/01047760201824032520
Oliveira LMQ, Valio IFM (1992) Effects of moisture content on germination of seeds of Hancornia speciosa Gom. (Apocynaceae). Ann Bot 69:1–5. https://doi.org/10.1093/oxfordjournals.aob.a088299
Pammenter NW, Berjak P (2014) Physiology of desiccation-sensitive (recalcitrant) seeds and the implications for cryopreservation. Int J Plant Sci 175:21–28. https://doi.org/10.1086/673302
Pammenter NW, Berjak P, Farrant JM, et al (1994) Why do stored hydrated recalcitrant seeds die? Seed Sci Res 4:187–191. https://doi.org/10.1017/S0960258500002178
Pandey VP, Awasthi M, Singh S, et al (2017) A Comprehensive Review on Function and Application of Plant Peroxidases. Biochem Anal Biochem 06: https://doi.org/10.4172/2161-1009.1000308
Paparella S, Araújo SS, Rossi G, et al (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34:1281–1293. https://doi.org/10.1007/s00299-015-1784-y
Parisi JJD, Biagi JD, Barbedo CJ, Medina PF (2013) Viability of Inga vera Willd. subsp. affinis (DC.) T. D. Penn. embryos according to the maturation stage, fungal incidence, chemical treatment and storage. J Seed Sci 35:70–76. https://doi.org/10.1590/s2317-15372013000100010
Pelegrini LL, Borcioni E, Nogueira AC, et al (2013) Efeito do estresse hídrico simulado com NaCl, manitol e PEG (6000) na germinação de sementes de Erythrina falcata Benth. Cienc Florest 23:513–521
Pereira AV, Botelho E, Pereira C, et al (2016) Hancornia speciosa (Mangaba). In: Plantas para o futuro - Região Centro-Oeste. pp 237–246
Pereira LCV, Mayrinck RC, Zambon CR, et al (2020) Storage of short-lived seeds of Inga vera subsp. affinis in osmotic medium. Seed Sci Res 1–5. https://doi.org/10.1017/S0960258520000185
Prudente D de O, Paiva R, Nery FC, et al (2017) Compatible solutes improve regrowth, ameliorate enzymatic antioxidant systems, and reduce lipid peroxidation of cryopreserved Hancornia speciosa Gomes lateral buds. Vitr Cell Dev Biol - Plant 53:352–362. https://doi.org/10.1007/s11627-017-9830-9
R Core Team (2022) R: A language and environment for statistical computing
Radwan A, Hara M, Kleinwächter M, Selmar D (2014) Dehydrin expression in seeds and maturation drying: A paradigm change. Plant Biol 16:853–855. https://doi.org/10.1111/plb.12228
Renard J, Niñoles R, Martínez-Almonacid I, et al (2020) Identification of novel seed longevity genes related to oxidative stress and seed coat by genome-wide association studies and reverse genetics. Plant Cell Environ 43:2523–2539. https://doi.org/10.1111/pce.13822
Sahu B, Sahu AK, Thomas V, Naithani SC (2017) Reactive oxygen species, lipid peroxidation, protein oxidation and antioxidative enzymes in dehydrating Karanj (Pongamia pinnata) seeds during storage. South African J Bot 112:383–390. https://doi.org/10.1016/j.sajb.2017.06.030
Santana FV, Oliveira ACA de, Oliveira LAR de, et al (2018) Effect of Desiccation Time on Seed Moisture and Regeneration of Mangaba (Hancornia speciosa) Embryos. J Exp Agric Int 28:1–10. https://doi.org/10.9734/jeai/2018/44644
Santos MA dos (2011) Análise geoambiental do município costeiro de Estância - Sergipe. Universidade Federal de Sergipe
Santos PCG dos, Alves EU, Guedes RS, et al (2010) Qualidade de sementes de Hancornia speciosa Gomes em função do tempo de secagem. Semin Agrar 31:343–352. https://doi.org/10.5433/1679-0359.2010v31n2p343
Santos RM, Santos AO, Sussuchi EM, et al (2015) Pyrolysis of mangaba seed: Production and characterization of bio-oil. Bioresour Technol 196:43–48. https://doi.org/10.1016/j.biortech.2015.07.060
Sayols S (2020) rrvgo: a Bioconductor package to reduce and visualize Gene Ontology terms
Sergipe (2010) Lei no 7.082 de 16 de dezembro de 2010. Reconhece as catadoras de mangaba como grupo cultural diferenciado e estabelece o auto-reconhecimento como critério do direito e dá outras providências.
Silva-Júnior JF, Lédo AS Sistema de Produção de Mangaba.pdf. In: Sist. Produção Mangaba para a Região Nordeste do Brasil. Available at: <https://www.spo.cnptia.embrapa.br/conteudo?p_p_id=conteudoportlet_WAR_sistemasdeproducaolf6_1ga1ceportlet&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1&p_r_p_-76293187_sistemaProducaoId=9105&p_r_p_-996514994_topicoId=1. Accessed 1 Mar 2022>
Silva-Mann R, Nunes VV, Rabbani ARC, et al (2021) Solução e processo para conservação de sementes recalcitrantes. Universidade Federal de Sergipe, Instituto Nacional de Propriedade Industrial. Brasil 10 2021 009165 7.
Silva AVC da, Oliveira JMSP, Cardoso MN, et al (2021) Collection, ex situ conservation and characterization of mangaba (Hancornia speciosa Gomes) germplasm in coastal lowland of Northeastern Brazil. Genet Resour Crop Evol 68:2441–2453. https://doi.org/10.1007/s10722-021-01141-4
Silva EF, Silva Júnior JF, Nascimento WF, Silva ACBLE (2022) Genetic resources of mangabeira (Hancornia speciosa Gomes) in protected areas in Brazil. Rev Bras Frutic 44:1–8. https://doi.org/10.1590/0100-29452022834
Soares GCM, Dias DCFS, Faria JMR, Borges EEL (2015) Physiological and biochemical changes during the loss of desiccation tolerance in germinating Adenanthera pavonina L. seeds. An Acad Bras Cienc 87:2001–2011. https://doi.org/10.1590/0001-3765201520140195
Sutherland JR, Diekmann M, Berjak P (2002) Forest tree seed health for hermplasm conservation. Rome, Italy
Vertucci CW (1989) The effects of low water contents on physiological activities of seeds. Physiol Plant 77:172–176. https://doi.org/10.1111/j.1399-3054.1989.tb05994.x
Viana WG, Lando AP, da Silva RA, et al (2020) Physiological performance of Garcinia gardneriana (Planch. & triana) zappi: A species with recalcitrant and dormant seeds. J Seed Sci 42:1–12. https://doi.org/10.1590/2317-1545v42222357
Vieira RD, Krzyzanowski FC (1999) Teste de condutividade elétrica. In: Krzyzanowski FC, Vieira RD, França-Neto JB (eds) Vigor de sementes: conceitos e testes. Abrates, pp 4.1-4.26
Walters C (2015) Orthodoxy, recalcitrance and in-between: describing variation in seed storage characteristics using threshold responses to water loss. Planta 242:397–406. https://doi.org/10.1007/s00425-015-2312-6
Walters C, Ballesteros D, Vertucci VA (2010) Structural mechanics of seed deterioration: Standing the test of time. Plant Sci 179:565–573. https://doi.org/10.1016/j.plantsci.2010.06.016
Wang L, Ma H, Song L, et al (2012) Comparative proteomics analysis reveals the mechanism of pre-harvest seed deterioration of soybean under high temperature and humidity stress. J Proteomics 75:2109–2127. https://doi.org/10.1016/j.jprot.2012.01.007
Waterworth WM, Bray CM, West CE (2015) The importance of safeguarding genome integrity in germination and seed longevity. J Exp Bot 66:3549–3558. https://doi.org/10.1093/jxb/erv080
Wyse S V., Dickie JB (2017) Predicting the global incidence of seed desiccation sensitivity. J Ecol 105:1082–1093. https://doi.org/10.1111/1365-2745.12725
Zhang K, Zhang Y, Sun J, et al (2021) Deterioration of orthodox seeds during ageing: Influencing factors, physiological alterations and the role of reactive oxygen species. Plant Physiol Biochem 158:475–485. https://doi.org/10.1016/j.plaphy.2020.11.031
Zhou W, Chen F, Luo X, et al (2020) A matter of life and death: Molecular, physiological, and environmental regulation of seed longevity. Plant Cell Environ 0–3. https://doi.org/10.1111/pce.13666