Allen, A.P., Gilooly, J. F., Savage, M., and Brown, J.H. (2006). Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl. Acad. Sci. USA, 103, 9130-9135.
Aman, J. W., Imperial, J. S., Ueberheide, B., Zhang, M.-M., Aguilar, M., Taylor, D., Watkins, M., Yoshikami, D., Showers-Corneli, P., Safavi-Hemami, H., Biggs, J., Teichert, R. W., and Olivera, B. M. (2015). Insights into the origins of fish hunting in venomous cone snails from studies of Conus tessulatus. Proc. Natl. Acad. Sci., 112, 5087-5092.
Bouchet, P. (2011). Hawaiian marine biota. an oasis of diversity in the North Pacific desert. Shells of the Hawaiian Islands - the Sea Shells, ed. Mike Severns (ConchBooks, Hackenheim) 26-31.
Cerling,T., Wang, Y., and Quade, J. (1993). Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature, 361, 344-345.
Chen, P., and Shakhnovich, E. I. (2010). Thermal adaptation of viruses and bacteria. Biophys. J., 98, 1109-1118.
Chu, X-L, Zhang, B-W, Zhang, Q-G, Zhu, B-R, Lin, K, and Zhang, D-Y (2018). Temperature responses of mutation rate and mutational spectrum in an Escherichia coli strain and the correlation with metabolic rate. BMC Evolutionary Biology, 18, 126. https://doi.org/10.1186/s12862-018-1252-8.
Concha-Marambio, L., Maldonado, P., Lagos, R., Monasterio, O., Montecinos-Franjola, F. (2017). Thermal adaptation of mesophilic and thermophilic FtsZ assembly by modulation of the critical concentration. PLoS One, 12, e0185707. https://doi.org/10.1371/journal.pone.0185707.
Coutelis, J. B., et al. (2013). Drosophila left/right asymmetry establishment is controlled by the Hox gene abdominal-B. Dev. Cell, 24, 89-97.
Davison A., et al., (2016). Formin is associated with Left-Right asymmetry in the pond snail and the frog. Curr Biol., 26, 654-60.
Dill, K. A., Ghosh, K., and Schmit, J. D. (2011). Physical limits of cells and proteomes. Proc. Natl. Acad. Sci. USA, 108, 17876-17882.
Dominy, B., Minoux, H., and Brooks, C. L. (2004). An electrostatic basis for the stability of thermophilic proteins. Proteins, 57, 128-141.
Ge, M., Xia, X.-Y., Pan, X.-M (2008). Salt bridges in the hyperthermophilic protein ssh 10b are resilient to temperature increases. J. Biol. Chem., 283, 31690-31696. DOI: 10.1074/jbc.M805750200
Gillman, L.N. , and Wright, S.D. (2014). Species richness and evolutionary speed: the influence of temperature, water and area. J Biogeogr., 41, 39–51.
Goldstone, J., Salam, A. and Weinberg, S. (1962). Broken symmetries. Phys. Rev., 127, 965.
Holbourn, A., Kuhnt, W., Clemens, S., Prell, W., and Andersen, N. (2013). Middle to late Miocene stepwise climate cooling: Evidence from a high-resolution deep water isotope curve spanning 8 million years. Paleocean. Paleoclim., 28, 688-699.
Hoskin, C., Higgie, M., McDonald, K., Moritz, C. (2005). Reinforcement drives rapid allopatric speciation. Nature, 437, 1353-1356.
Husby, A., Visser, M.E., Kruuk, L.E.B. (2011). Speeding up microevolution: the effects of increasing temperature on selection and genetic variance in a wild bird population. PLoS Biol., 9, e1000585.
Ivany, L. C., Patterson, W. P., and Lohmann, K. C. (2000). Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary. Nature, 407, 887-890.
Jablonski, D. (2022). Evolvability and Macroevolution: Overview and Synthesis. Evol. Biol. https://doi.org/10.1007/s11692-022-09570-4.
Kunimatsu, Y. et al., (2007). A new Late Miocene great ape from Kenya and its implications for the origins of African great apes and humans. Proc Natl Acad Sci USA, 104, 19220-19225.
Kürschner, W., Kvaček, Z., and Dilcher, D. (2008). The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc. Natl. Acad. Sci., 105, 449-453.
Livnat, A. (2017). Simplification, Innateness, and the Absorption of Meaning from Context: How Novelty Arises from Gradual Network Evolution. Evol. Biol., 44, 145-189.
Lu, Z. et al, (2021). Genome-wide DNA mutations in Arabidopsis plants after multigenerational exposure to high temperatures. Genome Biology, 22, 160. https://doi.org/10.1186/s13059-021-02381-4.
Mallet, J., Meyer, A., Nosil, P., and Feder, J.L. (2009). Space, sympatry and speciation. J. Evol. Biol., 22, 2332-41. doi:10.1111/j.1420-9101.2009.01816.x
Matthews, B.W., Nicholson, H. and Becktel, W. J. (1987). Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc. Natl. Acad. Sci. USA, 84, 6663-6667.
Moreno-Contreras, I. et al (2020). Climatic Niche Evolution in the Arremon brunneinucha Complex (Aves: Passerellidae) in a Mesoamerican Landscape. Evol. Biol., 47, 123–132.
Moyà-Solà, S., Köhler, M., Alba, D. M., Casanovas-Vilar, I., Galindo, J. (2004). Pierolapithecus catalaunicus, a new Middle Miocene great ape from Spain. Science, 306, 1339-1344.
Moyà-Solà, S., et al., (2009). A unique Middle Miocene European hominoid and the origins of the great ape and human clade. Proc. Natl. Acad. Sci. USA, 106, 9601-9606.
Musto, H. et al. (2006). Genomic GC level, optimal growth temperature, and genome size in prokaryotes. Biochem. Biophys. Res. Commun., 347, 1-3.
Nadeau, C.P. and Urban, M.C. (2019). Eco-evolution on the edge during climate change. Ecography, 42, 1280–1297. doi: 10.1111/ecog.04404
Nihio, Y. et al., (2003). Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res., 13, 1572-1579.
Papadopoulos, S., Jürgens, K. D., and Gros, G. (2000). Protein diffusion in living skeletal muscle fibers: dependence on protein size, fiber type, and contraction. Biophys. J., 79, 2084-2094.
Pauls, S.U., Nowak, C., Bálint, M., and Pfenninger, M. (2013). The impact of global climate change on genetic diversity within populations and species. Mol. Ecol., 22, 925–946.
Phillips, P. C. (2008). Epistasis - the essential role of gene interactions in the structure and evolution of genetic systems. Nat. Rev. Gen., 9, 855-867.
Ramond, P. (2001). Field Theory: A Modern Primer. 2nd ed. (Westview Press).
Régnier, C., Benoît, F. and Bouchet, P. (2009). Not knowing, not recording, not listing: numerous unnoticed mollusk extinctions. Conserv. Biol., 23, 1214-1221.
Sawle, L. and Ghosh, K. (2011). How do thermophilic proteins and proteomes withstand high temperature?. Biophys. J., 101, 217-227.
Silva-Dias, L. and López-Castillo, A. (2018). Spontaneous symmetry breaking of population: Stochastic LotkañVolterra model for competition among two similar preys and predators. Math. Biosci., 300, 36-46.
Slatkin, M. (2008). Linkage disequilibrium - understanding the evolutionary past and mapping the medical future. Nat. Rev. Gen., 9, 477-485.
Šmarda, P. et al. (2014). Ecological and evolutionary significance of genomic GC content diversity in monocots. Proc. Natl. Acad. Sci. USA, 111, E4096-E4102.
Smith, B. T. et al. (2014). The drivers of tropical speciation. Nature, 515, 406-409.
Stewart, I., Elmhirst, T. and Cohen, J. (2003). Symmetry-breaking as an origin of species, in Bifurcation, Symmetry and Patterns, eds. Buescu, J., de Castro, P. M., Dias, A. P., and Labouriau, I. S. (Springer,) 3-54.
Suwa, G., Kono, R. T., Katoh, S., Asfaw, B., and Beyene, Y. (2007). A new species of great ape from the late Miocene epoch in Ethiopia. Nature, 448, 921-924.
Tyn, M.T. and Gusek, T.W. (1990). Prediction of diffusion coefficients of proteins. Biotechnol. Bioeng., 35, 327-338.
Waldvogel, A.-M. and Pfenninger, M. (2021). Temperature dependence of spontaneous mutation rates. Genome Res., 31, 1582–1589.
Wiens, J.A. et al (2009). Niches, models, and climate change: Assessing the assumptions and uncertainties. Proc. Natl. Acad. Sci., 106, 19729 –19736.