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Abstract 20 

The growing computational demand in artificial intelligence (AI) calls for 21 

hardware solutions that are capable of in-situ machine learning, where both training and 22 
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inference are performed by edge computation. This not only requires extremely energy-1 

efficient architecture (such as in-memory computing, IMC) but also memory hardware 2 

with tunable properties to simultaneously meet the demand for training and inference. 3 

Here, we report a duplex device structure based on ferroelectric field-effect transistor 4 

(FeFET) and atomically thin MoS2 channel and realize a universal IMC architecture for 5 

in-situ learning. By exploiting the tunability of ferroelectric energy landscape, the 6 

duplex building block demonstrates overall excellent performance in endurance (>1013), 7 

retention (>10 years), speed (4.8 ns) and energy consumption (22.7 fJ/(bit·μm2)). We 8 

implemented a hardware neural network using arrays of two-transistor-one-duplex-9 

FeFET (2T1D) cells and achieved 99.86% accuracy in non-linear localization task with 10 

in-situ trained weights. Simulations show that the proposed device architecture could 11 

achieve the same level of performance as graphics processing unit under notably 12 

improved energy efficiency. Our device core can be combined with silicon circuitry 13 

through three-dimensional heterogeneous integration to give a hardware solution 14 

toward general edge intelligence (EI).15 



 

3 

 

Introduction 1 

Modern AI relies on central cloud to process data generated at edge devices. Such 2 

cloud-edge separated model is not energy efficient due to the von Neumann architecture 3 

underpinning digital computing systems as well as the data communications 1-3. There 4 

is strong motivation to develop in-situ machine learning hardware with training-and-5 

inference-in-one (TIIO) architecture (Fig. 1a), which is the ultimate goal of EI. TIIO 6 

offers the benefit of data security, real-time processing and bandwidth, but it requires 7 

extremely high energy and area efficiency due to limited resources at edge. For example, 8 

typical edge training scenarios involve over 1012 MAC operations per second under 9 

milliwatt power, which far exceed the capability of existing hardware technologies 4. 10 

Recently, IMC based on non-volatile memories (NVMs) emerges as a promising 11 

solution for EI 4,5,7-14. However, using a single NVM technology to perform 12 

simultaneous training and inference has been challenging 5-7. This is because training 13 

and inference take different aspects of memory properties 5. In particular, training 14 

involves abundant data so it requires good endurance, speed and energy efficiency. On 15 

the other hand, inference relies on pre-stored cell weights so retention is critical. In both 16 

scenarios, analog capability is desirable to improve the accuracy and energy efficiency 17 

of neural networks 5. Unfortunately, most NVMs lack large tunability in memory 18 

properties, preventing a universal IMC architecture that simultaneously satisfies the 19 

requirements for training and inference.  20 

Ferroelectrics was proposed as NVM in 1950s and recently became technologically 21 

promising after the discovery of ferroelectricity in binary fluorite oxides (HfO2 and 22 

ZrO2) down to the thickness limit 15-19. As the basic device building block for IMC, 23 

FeFET has been demonstrated on various channel materials, delivering some of the 24 

most promising characteristics for edge computing 20-28. Among the channel materials, 25 
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2D semiconductors (such as transition-metal dichalcogenides) are especially appealing 1 

because: 1) they have atomic thickness and therefore low power consumption through 2 

leakage at scaled device dimension 29-31; 2) the reduced screening allows the reduction 3 

of gate voltage and expands design margin for analog computing 32,33; 3) they are back-4 

end-of-line (BEOL) compatible with complementary metal-oxide-semiconductor 5 

(CMOS) and can be integrated with peripheral circuitry 34, although some challenges 6 

of material, device, and integration need to be addressed 35,36; 4) they offer a variety of 7 

sensory properties to facilitate the fusion of sensor with computing 23,37,38.  8 

 Here, we combined FeFET with monolayer MoS2 channel and devised a duplex 9 

device structure for in-situ machine learning. The duplex structure comprised of a split-10 

gate FeFET with different ferroelectric (FE)/dielectric (DE) capacitance ratio (CFE/CDE) 11 

optimized for training and inference, respectively. The duplex structure exhibited 12 

excellent endurance (>1013), retention (>10 years), speed (4.8 ns) and energy 13 

consumption (22.7 fJ/(bit·μm2)) simultaneously to meet the requirement for edge 14 

training and inference. Multi-layer neural network was implemented with array of 15 

2T1D cells and achieved 99.86% accuracy in non-linear localization using in-situ 16 

trained weights and all-analog computing. Our results suggest that combining 2D 17 

materials with ferroelectrics is a promising hardware solution for EI.  18 

The duplex FeFET device structure 19 

We exploited the tunability of FeFET by engineering the FE energy landscape in 20 

the metal–ferroelectric–metal–insulator–semiconductor (MFMIS) device structure. Fig. 21 

1b shows the schematic illustration of the duplex device structure consisting of two split 22 

gates with different CFE sharing the same MoS2 channel. The metal layer between FE 23 

and DE acts as floating gate in memory operation. The potential drop across the FE is 24 

expressed as: 25 
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𝑉𝐹𝐸 = 𝑉𝑔 ×
𝐶𝐷𝐸

𝐶𝐷𝐸+𝐶𝐹𝐸
 ,         (1) 1 

where 𝑉𝑔, 𝐶𝐹𝐸 and 𝐶𝐷𝐸  represent the gate voltage and the capacitance of FE and 2 

DE layer, respectively. The Gibbs free energy of the FE-DE system is expressed 3 

as 𝐺𝐹𝐸𝑡𝐹𝐸 + 𝐺𝐷𝐸𝑡𝐷𝐸 where 𝐺𝐹𝐸(𝐺𝐷𝐸) and 𝑡𝐹𝐸(𝑡𝐷𝐸) are the free energy and thickness of 4 

the FE (DE) layer, respectively. By changing the 𝐶𝐹𝐸/𝐶𝐷𝐸, the FeFET can evolve from 5 

“FE-like” to “DE-like” as a result of the evolving FE energy landscape, leading to 6 

continuously tunable memory characteristics (Extended Data Fig. 1). Specifically, 7 

when operating on the gate with small (large) 𝐶𝐹𝐸, the duplex FeFET is “FE-like” ("DE-8 

like”), which is more suitable for inference (training). In the extreme case of infinite 9 

𝐶𝐹𝐸/𝐶𝐷𝐸 (without FE), the device is “pure DE” and can serve as selector transistor in a 10 

cross-bar array.  11 

Fig. 1c displays the optical micrograph of a 2T1D duplex cell, where the two split 12 

gates of the duplex FeFET are connected to training- (T-) and inference- (I-) selectors 13 

through vertical vias. Fig. 1d illustrates the programing sequence during the in-situ 14 

machine learning process. The T- and I- word line, which is the gate voltage of the 15 

corresponding selector, is used to select the T-type and I-type synapse during training 16 

and inference, respectively. During in-situ training, multiple weight-tuning pulses are 17 

applied on T-type synapses through the bit line. After the network has been trained, the 18 

weights are transferred to I-type synapses through the same bit line, which are stored 19 

there and used for inference. The Vin, which is the drain voltage of the FeFET, acted as 20 

both weight read for backpropagation during training and data voltage input for feed 21 

forward during inference.  22 

Device performance of duplex FeFET 23 

All the devices in this work used chemical-vapor deposited monolayer MoS2 as 24 
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channel39 and local backgate structure consisting of two dielectrics layers (16 nm 1 

HfxZr1-xO2 FE and 12 nm HfO2 DE, corresponding permittivity of 18 and 19 2 

respectively) and three metal layers (backgate, floating gate, and source/drain) (Fig. 2a, 3 

see Methods for details of fabrication). All detailed geometric device parameters can be 4 

found in Supplementary Table 1. The temperature of the entire MoS2 transfer and device 5 

fabrication process was kept below 450 ℃. We first studied the memory properties of 6 

the FeFET as a function of 𝐶𝐹𝐸/𝐶𝐷𝐸. To this end, we fabricated a test structure with 7 

FE/DE area ratio 𝐴𝐹𝐸/𝐴𝐷𝐸 ranging from 0.007 to 2.667. Fig. 2b plots the double-sweep 8 

Ids-Vg characteristics of the FeFET as a function of 𝐴𝐹𝐸/𝐴𝐷𝐸. As expected, the memory 9 

window progressively narrowed with 𝐴𝐹𝐸/𝐴𝐷𝐸 due to the increasing DE contribution 10 

in the gate stack (Extended Data Fig. 1). In the pure DE case (by shorting the floating 11 

gate and backgate), the device returned to transistor behavior with negligible hysteresis 12 

(Fig. 2b, black line).  13 

The retention and endurance characteristics of the FeFET were summarized in Figs. 14 

2c, 2d and Extended Data Figs. 2, 3. In contrast to the binary memory in logic circuits, 15 

multi-bit data retention is desirable for inference using IMC. We performed accelerated 16 

retention test of 16 states in an I-type FeFET (AFE/ADE = 0.053) under 85 oC before 17 

(Fig. 2c) and after endurance cycling (Extended Data Fig. 3h). Both fresh device and 18 

device undergone 105 endurance cycles, the conductance of the states was well 19 

separated and did not show obvious degradation up to 103 s. More remarkably, even 20 

under 125 oC accelerated test 40, we could still extrapolate 10-year retention in the I-21 

type FeFET with on/off ratio of 106 (Extended Data Fig. 3f). To evaluate endurance, we 22 
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continuously applied programing and erasing voltage pulses with a period of 20 ns and 1 

measured the transfer curve to extract 𝐼𝑜𝑛 and 𝐼𝑜𝑓𝑓 at intervals of several cycles 41 (Fig. 2 

2d inset, see Methods for more details). Fig. 2d and Supplementary Fig. 1 show the 3 

endurance of a T-type FeFET (AFE/ADE = 0.67). The devices survived 1013 cycles without 4 

breaking, and the on/off ratio of 105 which was adequate for memory operations. We 5 

measured the endurance for a range of 𝐴𝐹𝐸/𝐴𝐷𝐸  and observed trade-off behavior with 6 

retention, which was consistent with the transition from “FE-like” to “DE-like” 7 

behavior (Extended Data Figs. 1 and 2a). Nevertheless, the endurance exceeded the 8 

requirement for edge training (109) and even cloud training (1012) in a wide range of 9 

𝐴𝐹𝐸/𝐴𝐷𝐸  7,42, providing a large design space for different applications. To 10 

experimentally evaluate the scaling potential of device metrics, we fabricated and 11 

measured scaled devices with different channel length. We found that even for channel 12 

length down to 85 nm, the strong 𝐴𝐹𝐸/𝐴𝐷𝐸 dependence, the high retention of DE-like 13 

devices and the high endurance of FE-like devices maintained a high consistency with 14 

long-channel devices (Supplementary Note 5 and Extended Data Fig. 2).  15 

We further performed benchmark with existing memory technologies, including 16 

Flash, RRAM, PCRAM, MRAM, FTJ and FeRAM (Fig. 2f, Supplementary Tables 2 17 

and 3). As a building block for IMC, our duplex FeFET structure simultaneously 18 

demonstrated good endurance and retention characteristics. It is worth noting that the 19 

degenerated endurance of Hf-based FeFET originates from numerous factors, such as 20 

high coercive field for saturation polarization, imprint induced by interfacial traps or 21 

defects, uncompensated charge by MFIS structure, etc. Compared with MFIS structure, 22 
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the MFMIS releases interfacial voltage stress and reduces the trap and defect 1 

generation20 while embracing symmetrical electrodes and compensated charge. 2 

Moreover, benefit from the strong gate dependence of atomic MoS2, the reduced 𝑉𝐹𝐸 3 

with the unsaturated polarization can still achieve the multi-bit storage required for 4 

training (more flattened E-P relationship, see details in Extended Data Fig. 1), thereby 5 

effectively improving endurance. As a result, our devices improved the endurance over 6 

existing Si- and MoS2-based FeFETs by 102 and 108, respectively.  7 

Memory speed and energy consumption was also critical for training with massive 8 

data. We characterized the switching speed and read speed by ultrafast pulse 9 

measurements and read-after-write measurements (Extended Data Fig. 4). As shown in 10 

Fig. 2e, the FeFET could be reliably programed and erased by 4.8 ns electrical pulses 11 

(limited by our experimental setup) with good retention and on/off ratio. The FE 12 

polarization can be effectively read with minimal delay of 20 ns after programmed, and 13 

there is almost no visible shift in both of high and low threshold voltages, which 14 

demonstrates very leading read speed (Supplementary Table 4). The switching speed 15 

was one of the fastest in FeFET and already met the International Roadmap for Devices 16 

and Systems (IRDS) target for NVM 43. We also calculated the switching energy of 3.4 17 

pJ (or 22.7 fJ/𝜇𝑚2) from the transient response (Extended Data Fig. 5), which was also 18 

among the lowest in NVM (Supplementary Table 2, 5). More importantly, Hf-based 19 

ferroelectric has been successfully integrated with advanced processes such as Fin-20 

FET44 and FDSOI45, and the memory window has also been reduced to 1.5 V or even 21 

lower, which demonstrates the great advantages of ferroelectrics in future advanced 22 
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manufacturing integrated circuit applications. 1 

We further assessed the analog storage capability. Extended Data Fig. 6a-c shows 2 

the 7-bit (128-state) output characteristics and the corresponding 3 

potentiation/depression process of a T-type FeFET (𝐴𝐹𝐸/𝐴𝐷𝐸  = 0.43, see Methods for 4 

details of measurement). The good linearity of output curves allows all-analog 5 

computing (as demonstrated later in the neural network), which is more energy efficient 6 

than binary encoding (Supplementary Note 2). The reliable multi-level performance is 7 

attributed to the dangling bond-free interface of MoS2 which could potentially 8 

overcome the trap-induced performance degradation in Si-based FeFET33. Overall, our 9 

duplex FeFET demonstrated excellent memory performance to meet the in-situ learning 10 

requirements on device level. 11 

Hardware implementation of in-situ learning 12 

To demonstrate the potential of the duplex FeFET architecture in in-situ learning, 13 

we built an artificial neural network (ANN) (Fig. 3a) containing three neuron layers 14 

(input, hidden and output) and solved the localization problem in 2D space (Fig. 3b), 15 

which is higher-order classification problem that cannot be implemented by single-16 

layer or binary network (Supplementary Note 3). The neural network was physically 17 

implemented by an 8× 3 array of 2T1D TIIO cells (Fig. 1c). Two 7-bit cells were 18 

combined together to realize positive and negative weights to imitate excitation and 19 

inhibition in biology. Therefore, the size of L1 synapse (connecting input and hidden 20 

layer) and L2 synapse (connecting hidden and output layer) are 2 × 4 and 4 × 1, 21 

respectively, with 8-bit precision. Within each cell, the T-type and I-type synapse shared 22 
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the MoS2 channel with 𝐴𝐹𝐸/𝐴𝐷𝐸 of 0.43 and 0.053, respectively. In this pseudo-cross-1 

bar array, training and inference functions were performed as the voltage sequence 2 

operation described in Fig. 1d. The datasets were imported as a voltage sequence to Vin 3 

without any encoding (Extended Data Fig. 6d). The weight was stored by FE 4 

polarization and translated as the channel conductance of FeFET and the output Ids was 5 

summed over each column according to Kirchhoff's Law. Owing to the linear Ids-Vds 6 

curve and long data retention, high-fidelity analog output waveforms were achieved. 7 

The measurement setup, software and interfaces were customized to facilitate the 8 

hardware test flow (see Methods, Extended Data Fig. 7).  9 

The in-situ learning process was divided into three steps, namely on-chip training, 10 

weight transfer, and on-chip inference. Fig. 3c shows a typical training process using 11 

T-type synapse, where the accuracy and loss gradually converge with distinguished 12 

boundaries of the dataset as the epoch progresses. The 2D heatmaps represent the 13 

pristine input data and the classification results after the 6th, 12th, and 17th training epoch. 14 

After the 17th epoch, the accuracy of both training and test reached 100%, while the 15 

cost dropped to 0.067 and 0.083, respectively. The evolution of the localization 16 

boundary during the training process was displayed in Supplementary Video 1. The 17 

histogram distribution of the synapse weights before and after training are shown in Fig. 18 

3d, suggesting that the weights were changed effectively by the backpropagation 19 

algorithm. The robustness and reliability of the classification results were further 20 

verified by computer simulations using the same architecture and learning scheme 21 

(Extended Data Fig. 8).  22 
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After training, the weights were transferred to I-type synapses in the TIIO cell for 1 

subsequent inference (see Methods). Subsequently, we performed classification of 2 

additional 10,000 data points as shown in Fig. 3e. Thanks to the excellent retention of 3 

I-type synapse, the output maintains high accuracy of 99.86% (14 mis-classified points 4 

out of 10,000). The histogram shows that most data points are distributed around 0.9 5 

(“inside”) or 0 (“outside”) away from the boundary (0.5), indicating high fidelity of the 6 

inference results.  7 

Simulation of large-scale artificial neural network 8 

Autonomous robotic vision is an important application for in-situ learning. 9 

Biological systems typically adopt binocular vision, which rely on disparity of optical 10 

path difference entering the left and right eyes to render the real-time 3D space. 11 

Monocular depth estimation, on the other hand, is attractive for computer vision due to 12 

the reduced hardware volume and computation resources46 (Fig. 4a). However, 13 

monocular depth estimation is like seeing 3D space when one eye, which requires 14 

repeated data training to adapt the foreshortening effects and therefore extremely high 15 

energy efficiency. 16 

A widely adopted approach for monocular depth estimation is the encoder-decoder 17 

architecture (Fig. 4b). The encoder part uses massive pre-trained weights through 18 

transfer learning47 but minimal weight update, which requires long data retention 19 

(corresponding to I-type synapse). On the contrary, the decoder part focused on feature 20 

extraction from training with abundant data (corresponding to T-type synapse). Here, a 21 

15-block U-Net48 with 178 layers was simulated using the duplex architecture, where 22 
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I-type (T-ype) synapses were used in the 9-block encoder (6-block decoder) with all the 1 

device parameters derived from experiments (see Methods and Extended Data Fig. 9). 2 

Two variation models were constructed for training and inference to ensure the 3 

simulation reliability (See Methods). The simulated chip consisted of 128 × 128 2T1D 4 

cells with peripheral analog-to-digital converter (ADC), sample-and-hold circuits 5 

multiplexer, controller, and driver (Fig. 4c inset). Fig. 4d and Extended Data Fig. 10e 6 

show several street scenes in autonomous driving. Our duplex TIIO chip successfully 7 

identified all the features and captured their relative depth with comparable 8 

convergence rate as GPU (Fig. 4c). The recognition accuracy (sigma 3 level of 9 

threshold) and RMSE (Root Mean Square Error) reached 96.85% and 6.31%, 10 

respectively (see Extended Data Fig. 10a,10c). Compared to GPU, the convolution 11 

circuit of duplex TIIO exhibits better energy efficiency while maintaining the equal 12 

computing accuracy. We designed rigorous scaling rules based on ITRS reports and cell 13 

layout with appraised parasitic parameter to perform energy efficiency projection for 14 

our TIIO cell at advanced 22 nm node (Supplementary Note 6). For training (inference) 15 

process, the pre- and post- simulation of projected cell energy efficiency is 2110 (111.86) 16 

TOPS/W and 1151 (111.86) TOPS/W. We noticed that the reduced energy efficiency in 17 

the post-simulation is induced by the larger operating voltage of the bit line, which also 18 

leads to further drop in energy efficiency as the array scale increases. Therefore, 19 

reducing the thickness of HZO and realizing the integration of more advanced 20 

technology node will be crucial to improving chip-level energy efficiency. Thanks to 21 

the BEOL advantages of 2D materials and ferroelectric HZO, the neuromorphic 22 
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computing cores can be the monolithically integrated with other necessary functional 1 

blocks of pooling, activation, routing and buffering in the future, and further improve 2 

overall energy efficiency. 3 

Conclusions 4 

In this work, we have shown large tunability of memory metrics by device 5 

architecture design, which is lacking for most non-volatile memory technologies. We 6 

demonstrated an IMC architecture that can complete in-situ machine learning, using a 7 

unitary device technology. By integrating split FE capacitors with complementary 8 

characteristics in the same memory cell, the proposed duplex architecture solves the 9 

problem of conflicting memory requirements for training and inference, which has long 10 

plagued EI applications. It not only simplifies the hardware fabrication process, but also 11 

merges the training and inference process in one memory building block. Such compact 12 

design can improve parallel computation and thus deliver higher energy efficiency. 13 

Based on 22 nm technology node, our architecture shows a post-simulation projected 14 

energy efficiency for training of 1151 TOPS/W, using the single TIIO cell. It is, however, 15 

worth noting that the projection here is somewhat overestimated because the 16 

contribution of the necessary peripheral circuitry is not included. Compared with 17 

previous work that focused on training and inference, we use the non-volatile multi-bit 18 

characteristics for both learning and inference on a single device, and demonstrate 2D 19 

localization task on a small-scale hardware circuit, which maintains high area efficiency 20 

and energy efficiency for IMC applications. Our design also embraces transfer learning 21 

which is widely applied in image processing, natural language processing and emotion 22 

recognition, thus will likely become a key component in lifelong learning applications. 23 

  24 
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Fig. 1. In-situ machine learning with TIIO cell. a, Inference and training process in 1 

machine learning. During inference, the weights are saved in a synapse array, where 2 

massive multiply-and-accumulate (MAC) are done in parallel. During training, weights 3 

in synapses are updated frequently. The proposed TIIO cell can integrate inference (I-) 4 

type and training (T-) type synapse in the same memory building block to realize in-5 

situ learning. b, Schematics of duplex 2D material CIM device. c, Optical microscope 6 

image and programming sequence of a TIIO cell comprised of 2T1D. Besides the 7 

duplex FeFET core, two selector transistors (T- and I-) are involved to form a pseudo-8 

crossbar structure. Scale bar, 20 μm. 9 

  10 
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Fig. 2. The duplex FeFET device performance. a, Schematic drawing of the test 1 

structure with different AFE/ADE sharing the same MoS2 channel. b, Transfer 2 

characteristics of FeFET with different AFE/ADE, revealing large tunability of memory 3 

window. c, 16-level (chosen from 128 states) data retention of an I-type FeFET 4 

(AFE/ADE = 0.053) under 85oC accelerated test. d, The endurance of a T-type FeFET 5 

(AFE/ADE = 0.67). Inset shows the pulse sequence during test. e, Switching of FeFET 6 

under 4.8 ns programming and erasing pulses. f, Benchmark of endurance and retention 7 

with other memory technologies. The three horizontal lines mark the endurance 8 

requirement for cloud training (>1012), edge training (>109), and storage (>105). STP: 9 

short-term plasticity; LTP: long-term plasticity. The references for the data in f are 10 

summarized in Supplementary Tables 2, 3. 11 
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Fig. 3. In-situ machine learning with TIIO ANN. a, Left, microscopic image of chip 1 

layout with TIIO ANNs and test structures. Scale bar, 1 mm. Right, one TIIO ANN 2 

with pseudo-crossbar structure containing two synapse layers (L1 and L2), 8 bit lines, 3 

8 hidden nodes, 6 word lines, 2 input lines and 1 output line. Scale bar, 100 μm. b, 4 

Scene illustration of the 2D localization task. This non-linear classification requires 5 

neural network with at least 2 synapse layers. The target of this ANN was classifying 6 

location data as “inside (1)” or “outside (0)” with a high accuracy. c-e, Training (c, d) 7 

and inference (e) with the TIIO ANN. c, Cost and accuracy as a function of training 8 

epoch (blue stands for training data and yellow stands for test data). The training 9 

finished at the 17th epoch with 100% accuracy. Classification heatmaps of the initial 10 

and 6th, 12th and 17th epoch are plotted. Data points with white (210 points) and black 11 

border (90 points) stand for training and test data, respectively. d, The distribution of 12 

weights and bias parameters before and after training. e, The inference result of 10,000 13 

data points using in-situ trained weights. 99.86% accuracy was achieved. The dash line 14 

at 0.5 draws out the threshold of classification, where the outputs ≥0.5 were classified 15 

as “inside (1)”, and the outputs <0.5 were classified as “outside (0)”. 16 
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Fig. 4. Simulation of large-scale TIIO ANN. a, The scene illustration of monocular 1 

depth estimation in autonomous driving. b, The employed neural network with 2 

encoder-decoder architecture. c, Test loss as a function of epoch simulated on GPU 3 

(gray) with 8-bit precision and 128×128 TIIO ANN (yellow). The yellow shaded region 4 

stands for standard error from 5 independent runs. And the center line with yellow 5 

symbols stands for the mean values of these 5 runs. Inset, schematic chip architecture 6 

used in this simulation. d, A representative scene of depth estimation containing 4 cars 7 

and 5 poles. The TIIO correctly distinguishes all the features with sharp edges.  8 
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Methods: 1 

The fabrication of the duplex FeFET/ TIIO Array.  2 

On the p-type silicon substrate with 275 nm SiO2, back gate (M1) was defined by 3 

electron beam lithography (EBL), 3 nm Ti/9 nm Pt were deposited by electron beam 4 

evaporator (EBE). 16 nm H0.5Z0.5O2 (HZO) film was deposited at 200℃ by atomic layer 5 

deposition (ALD) using precursors TDMA-Hf and TDMA-Zr, while water as the 6 

oxygen source. Next, floating gate (FG) was defined by EBL, and about 14nm Pt were 7 

evaporated using EBE. With FG metal covered, crystallizing of ferroelectric HZO was 8 

realized by rapid thermal annealing (RTA) at 450℃ in N2 atmosphere for 30s. 12 nm 9 

HfO2 film was deposited at 150℃ by ALD using precursor TEMA-Hf, while O2 plasma 10 

as the oxygen source. 11 

There are slight differences for fabrication of TIIO array. During the substrate 12 

fabrication, the input line and output line were made with M1 metal. The 13 

training/inference word line was made with M2 metal. The bit line and hidden nodes 14 

were made with M3 metal. Interconnection via was defined by EBL and etched using 15 

BCl3/Ar by GSE C200 Series Plasma Etcher, with Pt as etch stop after M1, M2 and 16 

dielectric. There were 4 different via types in a TIIO array: M1-M3, The input line in 17 

connection with drain of the FeFET; M1-M3, The bottom metal in connection with 18 

source of selector FET; M1, For probing the input line and output line; M2, For probing 19 

the training/inference word line. The size and distribution of pads were specially 20 

designed for customized probe cards. 21 

Single-crystalline monolayer MoS2 films were grown on custom-designed C/A-22 

plane sapphire wafers in a home-made CVD furnace. Assisted by 35nm flat Au films, 23 

the MoS2 film was transferred to target substrate by PMMA and PDMS. 24 

PDMS/PMMA/Au stack was laminated on fresh new MoS2/sapphire. Next, MoS2 was 25 

dry-delaminated from the sapphire and transferred onto substrates with pre-patterned 26 

gate layout in glovebox. Then, the unnecessary Au/MoS2 (defined by EBL) was 27 

removed by sequential Au etching (using Transense TFA) and MoS2 etching (using SF6 28 

and O2 plasma in reactive ion etcher (RIE)). The last step of EBL defined the 29 

Source/Drain pattern, and M3 metal of 10nm Ti/35nm Pd/10 nm Ti were deposited by 30 

EBE. Finally, self-aligned etch was performed to open channel via S/D metal mask 31 

using Transense TFA. An annealing (200℃) was performed to remove adsorbates and 32 

improve contact with base pressure ~10-6 Pa in vacuum atmosphere. 33 
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Electrical measurement of duplex FeFET 1 

We developed a home-made system for the various in-situ measurements of 2 

FeFET and TIIO array. The system contained Keithley 4200 semiconductor 3 

characterization system (SCS) with 4 SMUs for DC test and 4225- remote pulse and 4 

switch module (RPM) for pulse test, a National Instruments (NI)-PXIe 2532B matrix 5 

switch (with 8×64 terminal block), PXIe-5433 arbitrary waveform generator (AWG) 6 

and Keysight MSOX6004A oscilloscope. 7 

The transfer and output characteristics were measured by SMUs with pre-amplifier, 8 

which enable a current resolution of 0.1 fA. As for data retention, the FeFET was 9 

programmed to ON state or erased to OFF state, then a DC sampling test ran for 10 

thousands of seconds. In addition, we measured retention at temperatures of 85oC and 11 

125oC in a vacuum atmosphere in the Lake Shore CRX-VF probe station. We 12 

extrapolated the high-temperature 10-year retention by linear fitting. 13 

In the multi-state test, potentiation and degression were realized by positive and 14 

negative pulses, generated by 4225-RPMs. While applying pulses at gate, the drain and 15 

source of FET were both grounded. Once the pulse finished, we ground the gate and 16 

applied Vds to read the conductance of FeFET. For a shorter pulse width in the speed 17 

test, we switched to NI PXIe-5433 AWG, which can generate pulses with amplitudes 18 

up to 10 V and pulse widths as small as 4.8 ns. A Keysight MSOX6004A oscilloscope 19 

was used here to collect real-time pulse amplitude and width. The mode of AWG was 20 

set to user-defined waveform, list output, and immediate trigged. The duration was set 21 

carefully to make sure that only one pulse generated for every output. In endurance test, 22 

based on the AWG, we change the duration to output a sequence of identical pulses, 23 

with different cycles number of 1, 10, 1E3, 1E4, …, 1E13. At the very end of one 24 

sequence, we check the transfer curve of FeFET to monitor the performance 25 

degradation. Considering the time spent was very large for 1E12, 1E13 cycling, we just 26 

measured Ion and Ioff for discrete cycles rather than every cycle.  27 

Hardware in-situ machine learning on TIIO array 28 

In the array measurement, we modified the vacuum probe station to meet the 29 

special requirements. The NI PXIe 2532B matrix switch, in the 8×64 terminal set-up, 30 
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helped connect the SMUs/PMUs test sources with the device under test (DUT). We 1 

loaded two customized probe cards (12 pins for A, 15 pins for B) on the original arms 2 

in the probe station. These probe cards were electrically connected with flexible flat 3 

cables (FFC), adapters, cable hub (48-line feed through), and in the end, the test 4 

instruments outside. All the test were performed in the vacuum environment.  5 

For training process, we added one PC here in connected with Keithley 4200 SCS 6 

for running program codes, which defined the initial parameters and hyperparameters, 7 

flow of ANN training, interfaces for software-hardware interaction, and related data 8 

processing. On the level of hardware, two selectors share one drain in one 2T1D cell, 9 

thus the operation mode depends on which word line (T- or I-type) accesses the duplex 10 

FeFET. A typical process is mode transferring from training to inference, which means 11 

resetting the T-type capacitor, switching to I-word line, and programing I-type capacitor 12 

to a well-trained weight. More details about the algorithm can be found in the 13 

Supplementary Note 4. 14 

Device modeling and hardware evolution  15 

Based on the measuring results of duplex FeFET devices (Supplementary Fig. 6,7), 16 

we constructed two variation models for the inference and training, respectively. 17 

Without loss of generality, random variables sampled from the Gaussian distribution 18 

with zero mean and σ2 variance are used to simulate the inference and training variation. 19 

A linear variation model is used in this work. 20 

𝑊𝑤/ 𝑛𝑜𝑖𝑠𝑒  =  𝑊𝑤/𝑜 𝑛𝑜𝑖𝑠𝑒  +  𝑊𝑤/𝑜 𝑛𝑜𝑖𝑠𝑒 × 𝑁𝑜𝑖𝑠𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑠,   (2) 21 

𝑁𝑜𝑖𝑠𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑠~𝑁(0, 𝜎𝑤𝑒𝑖𝑔ℎ𝑡𝑠
2 ).      (3) 22 

The standard deviation σweights is 0.056 μS (3μm Lch) and 0.040μS (scaled device, 23 

85nm Lch). 24 

Similar to the inference variation, a similar linear model is used to simulate the training 25 

variation:  26 

𝑉𝑢𝑝𝑑𝑎𝑡𝑒 𝑤/ 𝑛𝑜𝑖𝑠𝑒  =  𝑉𝑢𝑝𝑑𝑎𝑡𝑒 𝑤/𝑜 𝑛𝑜𝑖𝑠𝑒  + 𝑉𝑢𝑝𝑑𝑎𝑡𝑒 𝑤/𝑜 𝑛𝑜𝑖𝑠𝑒 × 𝑁𝑜𝑖𝑠𝑒𝑢𝑝𝑑𝑎𝑡𝑒 ,  (4) 27 

𝑁𝑜𝑖𝑠𝑒𝑢𝑝𝑑𝑎𝑡𝑒~𝑁(0, 𝜎𝑢𝑝𝑑𝑎𝑡𝑒
2 ).       (5) 28 
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The standard deviation σupdate  is 0.043 μS (3μm Lch) and 0.017μS (scaled device, 1 

85nm Lch). 2 

Dataset and neural network structure in monocular depth estimation  3 

We evaluated our devices on a monocular pixel-level depth prediction task based 4 

on a subset of the KITTI dataset. The data in KITTI dataset is captured by driving 5 

around in rural areas and on highways in the mid-size city of Karlsruhe. The dataset 6 

comprises stereo and optical flow image pairs, stereo visual odometry sequences, and 7 

object annotations captured scenarios49. In this work, we tried to predict the depth of 8 

each pixel in the raw RGB images from a monocular camera. We randomly selected 9 

2,802 images for training and 608 images for the test. 10 

We simulated a transfer learning algorithm to demonstrate the superiority of TIIO 11 

architecture in both inference and training. The neural network adopts the U-Net 12 

structure, which consists of the encoder and decoder 47,48. The encoder is realized by a 13 

169-layer DenseNet 50 with four dense blocks and four transition blocks. The decoder 14 

is realized by a convolutional layer and five upsampling blocks. Each upsampling block 15 

contains a bilinear upsampling layer and two convolutional layers with Leaky-ReLU 16 

activations. The four dense blocks in the encoder are connected to the first four 17 

upsampling blocks, respectively. The whole network configuration is shown in 18 

Supplementary Table 9. The encoder is pretrained on ImageNet classification task 50,51. 19 

While the decoder is randomly initialized using a uniform model and trained for this 20 

depth prediction task with the encoder together. 21 

Training details in monocular depth estimation 22 

The loss function with L1-norm loss and structural similarity (SSIM) loss52 is 23 

used: 24 

𝐿𝑜𝑠𝑠 = 𝜆𝐿1(𝑦, ŷ) + 𝐿𝑆𝑆𝐼𝑀(𝑦, ŷ),      (6) 25 

where y indicates predicted image and ŷ indicates ground truth. The pixel-wise 26 

L1-norm loss is defined as: 27 

𝐿1(𝑦, ŷ) =
1

𝑛
∑ |𝑦𝑝 − ŷ𝑝

𝑛
𝑝 |.      (7) 28 

The SSIM loss is defined as: 29 
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𝐿𝑆𝑆𝐼𝑀(𝑦, ŷ) =
1−𝑆𝑆𝐼𝑀(𝑦,ŷ)

2
.        (8) 1 

λ is set to 0.1 in this work. 2 

To update the weights according to the gradients, a series of identical pulses are 3 

applied on the duplex FeFET devices and the without-verify strategy is used in this 4 

simulation. When the gradient is less than a quarter of the average change of one 5 

pulse, the devices will not be changed.  6 

The other parameter setting of the training are listed in Supplementary Table 10. 7 

Evaluation of predicted depth  8 

We evaluated the accuracy of predicted depth with different tolerant level (δ1, δ2, δ3), 9 

the absolute relative depth error (abs Rel.), the root mean square error of depth (RMS), 10 

and the Log Mean Absolute Error (log MAE) 53 of our duplex FeFET in-situ training 11 

algorithm. The predicted depth of a pixel is considered correct with tolerant level δ 12 

depending on whether the relative error between the predicted depth and the ground 13 

truth is smaller than δ. 14 

𝑚𝑎𝑥 (
𝑑𝑒𝑝𝑡ℎ𝑝𝑟𝑒𝑑 

𝑑𝑒𝑝𝑡ℎ𝑔𝑡 
,

𝑑𝑒𝑝𝑡ℎ𝑔𝑡 

𝑑𝑒𝑝𝑡ℎ𝑝𝑟𝑒𝑑 
) < δ.       (9) 15 

The tolerant level used in this work is 1.25, 1.252, and 1.253. The other evaluation 16 

indicators are calculated as follows. 17 

𝑎𝑏𝑠 Rel. =
1

n
∑

|𝑦𝑝𝑟𝑒𝑑−𝑦𝑔𝑡|

𝑦𝑔𝑡
,       (10) 18 

RMS = √
1

n
|𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑔𝑡|2,       (11) 19 

𝑙𝑜𝑔 MAE =
1

n
∑ |𝑙𝑜𝑔(𝑦𝑝𝑟𝑒𝑑) − 𝑙𝑜𝑔(𝑦𝑔𝑡)|.        (12) 20 

The comparisons between GPU and TIIO are shown in Extended Data Fig 10. 21 
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Data availability: Source data are provided with this paper. 1 

 2 

Code availability: The codes used to build the interfaces (0~3) in the demonstrations 3 

in Fig. 3, and used for the simulations in Extended Data Fig. 8 are available from the 4 

corresponding author upon reasonable request. 5 
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