1 Jones, N. How to stop data centres from gobbling up the world’s electricity. Nature 41, 198-211 (2018).
2 Yamaoka, S. et al. Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate. Nature Photonics 15, 28-+, doi:10.1038/s41566-020-00700-y (2021).
3 Matsui, Y. et al. Low-chirp isolator-free 65-GHz-bandwidth directly modulated lasers. Nature Photonics 15, 59-63, doi:10.1038/s41566-020-00742-2 (2020).
4 Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101-104, doi:10.1038/s41586-018-0551-y (2018).
5 He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nature Photonics 13, 359-364, doi:10.1038/s41566-019-0378-6 (2019).
6 Kharel, P., Reimer, C., Luke, K., He, L. & Zhang, M. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica 8, doi:10.1364/optica.416155 (2021).
7 Xu, M. et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica 9, doi:10.1364/optica.449691 (2022).
8 Haffner, C. et al. All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photonics 9, 525-+, doi:10.1038/Nphoton.2015.127 (2015).
9 Koch, U. et al. A monolithic bipolar CMOS electronic–plasmonic high-speed transmitter. Nature Electronics 3, 338-345, doi:10.1038/s41928-020-0417-9 (2020).
10 Lu, G. W. et al. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit s(-1) for energy-efficient datacentres and harsh-environment applications. Nat Commun 11, 4224, doi:10.1038/s41467-020-18005-7 (2020).
11 Ogiso, Y. et al. Over 67 GHz Bandwidth and 1.5 V Vπ InP-Based Optical IQ Modulator With n-i-p-n Heterostructure. Journal of Lightwave Technology 35, 1450-1455, doi:10.1109/jlt.2016.2639542 (2017).
12 Estaran, J. M. et al. 140/180/204-Gbaud OOK Transceiver for Inter- and Intra-Data Center Connectivity. Journal of Lightwave Technology 37, 178-187, doi:10.1109/jlt.2018.2876732 (2019).
13 Chan, D. W. U. et al. A Compact 112-Gbaud PAM-4 Silicon Photonics Transceiver for Short-Reach Interconnects. Journal of Lightwave Technology, 1-1, doi:10.1109/jlt.2022.3141906 (2022).
14 Meer Sakib, P. L., Chaoxuan Ma, Ranjeet Kumar, Duanni Huang, Guan-Lin Su, Xinru Wu, Saeed Fathololoumi, and Haisheng Rong. in CLEO (2021).
15 Yuguang Zhang, H. Z., Miaofeng Li,Peng Feng, Lei Wang, Xi Xiao, and Shaohua Yu. in ECOC.
16 Zhang, Y. et al. 240 Gb/s optical transmission based on an ultrafast silicon microring modulator. Photonics Research 10, doi:10.1364/prj.441791 (2022).
17 Zhang, H. et al. 800 Gbit/s transmission over 1 km single-mode fiber using a four-channel silicon photonic transmitter. Photonics Research 8, doi:10.1364/prj.396815 (2020).
18 Li, M., Wang, L., Li, X., Xiao, X. & Yu, S. Silicon intensity Mach–Zehnder modulator for single lane 100 Gb/s applications. Photonics Research 6, doi:10.1364/prj.6.000109 (2018).
19 Witzens, J. High-Speed Silicon Photonics Modulators. Proceedings of the IEEE 106, 2158-2182, doi:10.1109/jproc.2018.2877636 (2018).
20 Rito, P., Liopez, I. G., Awny, A., Ulusoy, A. C. & Kissinger, D. in 2017 IEEE MTT-S International Microwave Symposium (IMS) 439-442 (2017).
21 Michard, A. et al. A Sub-pJ/Bit, Low-ER Mach–Zehnder-Based Transmitter for Chip-to-Chip Optical Interconnects. IEEE Journal of Selected Topics in Quantum Electronics 26, 1-10, doi:10.1109/jstqe.2019.2954705 (2020).
22 Moazeni, S. et al. A 40-Gb/s PAM-4 Transmitter Based on a Ring-Resonator Optical DAC in 45-nm SOI CMOS. IEEE Journal of Solid-State Circuits 52, 3503-3516, doi:10.1109/jssc.2017.2748620 (2017).
23 Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nature Photonics 4, 518-526, doi:10.1038/nphoton.2010.179 (2010).
24 Ginzton, E. L., Hewlett, W. R., Jasberg, J. H. & Noe, J. D. Distributed Amplification. Proceedings of the IRE 36, 956-969, doi:10.1109/jrproc.1948.231624 (1948).
25 Changhao Han, M. J., Yuansheng Tao, Bitao Shen, Haowen Shu, and Xingjun Wang. in OFC.
26 Li, K. et al. Electronic–photonic convergence for silicon photonics transmitters beyond 100 Gbps on–off keying. Optica 7, doi:10.1364/optica.411122 (2020).
27 Jun-De, J. & Shawn, H. A Miniaturized 70-GHz Broadband Amplifier in 0.13-$\mu {\hbox{m}}$ CMOS Technology. IEEE Transactions on Microwave Theory and Techniques 56, 3086-3092, doi:10.1109/tmtt.2008.2007089 (2008).
28 Flandre, D., Viviani, A., Eggermont, J. P., Gentinne, B. & Jespers, P. G. A. Improved synthesis of gain-boosted regulated-cascode CMOS stages using symbolic analysis and gm/ID methodology. Ieee Journal of Solid-State Circuits 32, 1006-1012, doi:Doi 10.1109/4.597291 (1997).
29 Silveira, F., Flandre, D. & Jespers, P. G. A. A g/sub m//I/sub D/ based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator micropower OTA. IEEE Journal of Solid-State Circuits 31, 1314-1319, doi:10.1109/4.535416 (1996).
30 Teruo Jyo, M. N., Josuke Ozaki, Mitsuteru Ishikawa, Hideyuki Nosaka. in 2020 IEEE International Solid- State Circuits Conference - (ISSCC).
31 Jyo, T., Nagatani, M., Ogiso, Y., Yamanaka, S. & Nosaka, H. An Over 67-GHz Bandwidth 21-dB Gain 4.5-Vppd Linear Modulator Driver for 100-GBd Coherent Optical Transmitter. IEEE Microwave and Wireless Components Letters 31, 705-708, doi:10.1109/lmwc.2021.3062423 (2021).
32 Xiong, C. et al. Monolithic 56 Gb/s silicon photonic pulse-amplitude modulation transmitter. Optica 3, 1060, doi:10.1364/optica.3.001060 (2016).
33 Li, K. et al. in 2018 European Conference on Optical Communication (ECOC) 1-3 (2018).
34 Hao, X. et al. Demonstration and Characterization of High-Speed Silicon Depletion-Mode Mach–Zehnder Modulators. IEEE Journal of Selected Topics in Quantum Electronics 20, 23-32, doi:10.1109/jstqe.2013.2293763 (2014).
35 Tu, X. et al. Silicon optical modulator with shield coplanar waveguide electrodes. Opt Express 22, 23724-23731, doi:10.1364/OE.22.023724 (2014).
36 Jacques, M. et al. 240 Gbit/s Silicon Photonic Mach-Zehnder Modulator Enabled by Two 2.3-Vpp Drivers. Journal of Lightwave Technology, 1-1, doi:10.1109/jlt.2020.2985589 (2020).
37 Zhao, Y. et al. Silicon Photonic Based Stacked Die Assembly toward 4X200-Gbit/s Short-Reach Transmission. Journal of Lightwave Technology, 1-1, doi:10.1109/jlt.2021.3122945 (2021).
38 Ahmed, A. H. et al. A Dual-Polarization Silicon-Photonic Coherent Transmitter Supporting 552 Gb/s/wavelength. IEEE Journal of Solid-State Circuits 55, 2597-2608, doi:10.1109/jssc.2020.2988399 (2020).
39 Li, H., Hsu, C.-M., Sharma, J., Jaussi, J. & Balamurugan, G. A 100-Gb/s PAM-4 Optical Receiver With 2-Tap FFE and 2-Tap Direct-Feedback DFE in 28-nm CMOS. IEEE Journal of Solid-State Circuits, 1-1, doi:10.1109/jssc.2021.3110088 (2021).
40 Talkhooncheh, A. H. et al. in 2022 IEEE International Solid- State Circuits Conference (ISSCC) 284-286 (2022).
41 Weblink1:. <https://www.cornerstone.sotonfab.co.uk/>
42 Weblink2:. <https://europractice-ic.com/>
43 Littlejohns, C. G. et al. CORNERSTONE's Silicon Photonics Rapid Prototyping Platforms: Current Status and Future Outlook. Appl Sci-Basel 10, doi:ARTN 820110.3390/app10228201 (2020).
44 Thomson, D. J. et al. High contrast 40Gbit/s optical modulation in silicon. Opt Express 19, 11507-11516, doi:10.1364/OE.19.011507 (2011).