1 Kamisawa, T., Wood, L. D., Itoi, T. & Takaori, K. Pancreatic cancer. Lancet 388, 73-85, doi:10.1016/s0140-6736(16)00141-0 (2016).
2 Dodson, L. F., Hawkins, W. G. & Goedegebuure, P. Potential targets for pancreatic cancer immunotherapeutics. Immunotherapy 3, 517-537, doi:10.2217/imt.11.10 (2011).
3 Momeny, M. et al. Anti-tumor activity of cediranib, a pan-vascular endothelial growth factor receptor inhibitor, in pancreatic ductal adenocarcinoma cells. Cell Oncol (Dordr), doi:10.1007/s13402-019-00473-9 (2019).
4 Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646-674, doi:10.1016/j.cell.2011.02.013 (2011).
5 Crawley, A. S. & O'Kennedy, R. J. The need for effective pancreatic cancer detection and management: a biomarker-based strategy. Expert Rev Mol Diagn 15, 1339-1353, doi:10.1586/14737159.2015.1083862 (2015).
6 Wolfgang, C. L. et al. Recent progress in pancreatic cancer. CA Cancer J Clin 63, 318-348, doi:10.3322/caac.21190 (2013).
7 Feng, H. et al. Identification of significant genes with poor prognosis in ovarian cancer via bioinformatical analysis. J Ovarian Res 12, 35, doi:10.1186/s13048-019-0508-2 (2019).
8 Lu, W., Li, N. & Liao, F. Identification of Key Genes and Pathways in Pancreatic Cancer Gene Expression Profile by Integrative Analysis. Genes (Basel) 10, doi:10.3390/genes10080612 (2019).
9 Chen, Q. et al. Screening and identification of hub genes in pancreatic cancer by integrated bioinformatics analysis. J Cell Biochem 120, 19496-19508, doi:10.1002/jcb.29253 (2019).
10 Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307-315, doi:10.1093/bioinformatics/btg405 (2004).
11 Dennis, G. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biology 4, R60, doi:10.1186/gb-2003-4-9-r60 (2003).
12 von Mering, C. et al. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31, 258-261, doi:10.1093/nar/gkg034 (2003).
13 Chin, C. H. et al. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8 Suppl 4, S11, doi:10.1186/1752-0509-8-S4-S11 (2014).
14 Chandrashekar, D. S. et al. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia 19, 649-658, doi:10.1016/j.neo.2017.05.002 (2017).
15 Tang, Z. et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45, W98-W102, doi:10.1093/nar/gkx247 (2017).
16 Crnogorac-Jurcevic, T. et al. Molecular analysis of precursor lesions in familial pancreatic cancer. PLoS One 8, e54830, doi:10.1371/journal.pone.0054830 (2013).
17 Zhang, G. et al. DPEP1 inhibits tumor cell invasiveness, enhances chemosensitivity and predicts clinical outcome in pancreatic ductal adenocarcinoma. PLoS One 7, e31507, doi:10.1371/journal.pone.0031507 (2012).
18 Zhang, G. et al. Integration of metabolomics and transcriptomics revealed a fatty acid network exerting growth inhibitory effects in human pancreatic cancer. Clin Cancer Res 19, 4983-4993, doi:10.1158/1078-0432.Ccr-13-0209 (2013).
19 Pei, Y. F., Yin, X. M. & Liu, X. Q. TOP2A induces malignant character of pancreatic cancer through activating beta-catenin signaling pathway. Biochim Biophys Acta Mol Basis Dis 1864, 197-207, doi:10.1016/j.bbadis.2017.10.019 (2018).
20 Song, Z., Feng, C., Lu, Y., Lin, Y. & Dong, C. PHGDH is an independent prognosis marker and contributes cell proliferation, migration and invasion in human pancreatic cancer. Gene 642, 43-50, doi:10.1016/j.gene.2017.11.014 (2018).
21 Guo, W., Zhong, K., Wei, H., Nie, C. & Yuan, Z. Long non-coding RNA SPRY4-IT1 promotes cell proliferation and invasion by regulation of Cdc20 in pancreatic cancer cells. PLoS One 13, e0193483, doi:10.1371/journal.pone.0193483 (2018).
22 Meng, Q. C. et al. Overexpression of NDC80 is correlated with prognosis of pancreatic cancer and regulates cell proliferation. Am J Cancer Res 5, 1730-1740 (2015).
23 Stangel, D. et al. Kif20a inhibition reduces migration and invasion of pancreatic cancer cells. J Surg Res 197, 91-100, doi:10.1016/j.jss.2015.03.070 (2015).
24 Hinzman, C. P. et al. Aberrant expression of PDZ-binding kinase/T-LAK cell-originated protein kinase modulates the invasive ability of human pancreatic cancer cells via the stabilization of oncoprotein c-MYC. Carcinogenesis 39, 1548-1559, doi:10.1093/carcin/bgy114 (2018).
25 Pasiliao, C. C. et al. The involvement of insulin-like growth factor 2 binding protein 3 (IMP3) in pancreatic cancer cell migration, invasion, and adhesion. BMC Cancer 15, 266, doi:10.1186/s12885-015-1251-8 (2015).
26 Dong, S., Huang, F., Zhang, H. & Chen, Q. Overexpression of BUB1B, CCNA2, CDC20, and CDK1 in tumor tissues predicts poor survival in pancreatic ductal adenocarcinoma. Biosci Rep 39, doi:10.1042/bsr20182306 (2019).
27 Yu, Z. et al. [Expression of NUSAP1 and its relationship with prognosis in non-small cell lung cancer]. Zhonghua Zhong Liu Za Zhi 41, 522-526, doi:10.3760/cma.j.issn.0253-3766.2019.07.007 (2019).
28 Li, X. et al. Knockdown of SP1/Syncytin1 axis inhibits the proliferation and metastasis through the AKT and ERK1/2 signaling pathways in non-small cell lung cancer. Cancer Med, doi:10.1002/cam4.2448 (2019).
29 Zhang, X., Pan, Y., Fu, H. & Zhang, J. Nucleolar and Spindle Associated Protein 1 (NUSAP1) Inhibits Cell Proliferation and Enhances Susceptibility to Epirubicin In Invasive Breast Cancer Cells by Regulating Cyclin D Kinase (CDK1) and DLGAP5 Expression. Med Sci Monit 24, 8553-8564, doi:10.12659/msm.910364 (2018).
30 Shan, S., Chen, W. & Jia, J. D. Transcriptome Analysis Revealed a Highly Connected Gene Module Associated With Cirrhosis to Hepatocellular Carcinoma Development. Front Genet 10, 305, doi:10.3389/fgene.2019.00305 (2019).
31 Dong, Y. D., Yuan, Y. L., Yu, H. B., Tian, G. J. & Li, D. Y. SHCBP1 is a novel target and exhibits tumorpromoting effects in gastric cancer. Oncol Rep 41, 1649-1657, doi:10.3892/or.2018.6952 (2019).
32 Zou, A. et al. SHCBP1 promotes cisplatin induced apoptosis resistance, migration and invasion through activating Wnt pathway. Life Sci 235, 116798, doi:10.1016/j.lfs.2019.116798 (2019).
33 Wang, F., Li, Y., Zhang, Z., Wang, J. & Wang, J. SHCBP1 regulates apoptosis in lung cancer cells through phosphatase and tensin homolog. Oncol Lett 18, 1888-1894, doi:10.3892/ol.2019.10520 (2019).
34 Liu, L. et al. EGF-induced nuclear localization of SHCBP1 activates beta-catenin signaling and promotes cancer progression. Oncogene 38, 747-764, doi:10.1038/s41388-018-0473-z (2019).
35 Zhou, Y. et al. Overexpression of SHCBP1 promotes migration and invasion in gliomas by activating the NF-kappaB signaling pathway. Mol Carcinog 57, 1181-1190, doi:10.1002/mc.22834 (2018).
36 Tao, H. C. et al. Targeting SHCBP1 inhibits cell proliferation in human hepatocellular carcinoma cells. Asian Pac J Cancer Prev 14, 5645-5650, doi:10.7314/apjcp.2013.14.10.5645 (2013).