Agangi, A., Hofmann, A. & Przybyłowicz, W. 2014. Trace element zoning of sulfides and quartz at Sheba and Fairview gold mines: Clues to Mesoarchean mineralisation in the Barberton Greenstone Belt, South Africa. Ore Geology Reviews. 56:94–114.
Agangi, A., Hofmann, A., Rollion-Bard, C., Marin-Carbonne, J., Cavalazzi, B., Large, R. & Meffre, S. 2015. Gold accumulation in the Archaean Witwatersrand Basin, South Africa-Evidence from concentrically laminated pyrite. Earth-Science Reviews. 140:27–53.
Altigani, M.A.H. 2021a. Insights on Mineralogy and Chemistry of Fairview Gold Mine, Barberton Greenstone Belt, South Africa. Indonesian Journal on Geoscience. 18(1):73–99.
Altigani, M.A.H. 2021b. Studies on the Ore Mineralogy and Litho-geochemistry of the Sheba Deposit, Barberton Greenstone Belt, South Africa. Economic and Environmental Geology. 54(2):213–232.
Van Aswegen, P.C. & Marais, H.J. 1999. Advances in the application of the BIOX® Process for refractory gold ores. Minerals and Metallurgical Processing. 16(4):61–68.
Babedi, L., Von der Heyden, B., Tadie, M. & Mayne, M.J. 2022. Trace elements in pyrite from five different gold ore deposit classes: a review and meta-analysis. Geological Society Publications. 516(1).
Barnicoat, A.C., Henderson, I.H.C., Knipe, R.J., Yardley, B.W.D., Napier, R.W., Fox, N.P.C., Kenyon, A.K., Muntingh, D.J., et al. 1997. Hydrothermal gold mineralization in the Witwatersrand basin. Nature. 386(6627):820–824.
Bosch, D.W. 1987. Retreatment of Residues and Waste Rock. The Extractive Metallurgy of Gold in South Africa Volume 1. 707–743.
Cabri, L.J., Chryssoulis, S.L. & de Villiers, J. 1989. The nature of “invisible” gold in arsenopyrite. The Canadian Mineralogist. 27(3):353–362.
Canadian Council of Ministers of the Environment. 2007. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health. [Online], Available: https://www.esdat.net/environmental standards/canada/soil/rev_soil_summary_tbl_7.0_e.pdf [2021, October 19].
Coetzee, L.L., Theron, S.J., Martin, G.J., Merwe, J.D. Van Der & Stanek, T.A. 2011. Modern gold deportments and its application to industry. Minerals Engineering. 24(6):565–575.
da Costa, G., Hofmann, A. & Agangi, A. 2020. A revised classification scheme of pyrite in the Witwatersrand Basin and application to placer gold deposits. Earth-Science Reviews. 201.
Deditius, A.P., Reich, M., Kesler, S.E., Utsunomiya, S., Chryssoulis, S.L., Walshe, J. & Ewing, R.C. 2014. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochimica et Cosmochimica Acta. 140:644–670.
Department of Environmental Affairs. 2014. National Norms and Standards for the Remediation of contaminated land and soil quality. [Online], Available: https://cer.org.za/wp-content/uploads/2010/03/national-environmental-management-waste-act-59-2008-national-norms-and-standards-for-the-remediation-of-contaminated-land-and-soil-quality_20140502-GGN-37603-00331.pdf [2021, October 09].
England, G.L., Rasmussen, B., Krapez, B. & Groves, D.I. 2002. Palaeoenvironmental significance of rounded pyrite in siliciclastic sequences of the Late Archaean Witwatersrand Basin: Oxygen-deficient atmosphere or hydrothermal alteration? Sedimentology. 49(6):1133–1156.
Fleming, C.A., Brown, J.A. & Botha, M. 2010. An economic and environmental case for re-processing gold tailings in South Africa. in 42nd Annual Meeting of the Canadian Mineral Processors. 365–388. [Online], Available: http://www.sgs.com/-/media/global/documents/technical-documents/sgs-technical-papers/sgs-min-tp2010-03-a-case-for-re-processing-gold-tailings-in-south-africa.pdf.
Frimmel, H.E. 2005. Archaean atmospheric evolution: Evidence from the Witwatersrand gold fields, South Africa. Earth-Science Reviews. 70(1–2):1–46.
Frimmel, H.E. 2014. A Giant Mesoarchean Crustal Gold-Enrichment Episode : Possible Causes and Consequences for Exploration. Society of Economic Geologists. 18:209–234.
Frimmel, H.E. 2019. The Witwatersrand Basin and Its Gold Deposits. in The Archaean Geology of the Kaapvaal Craton, Southern Africa A. Kröner & A. Hofmann (eds.). Cham: Springer International Publishing A. Kröner & A. Hofmann (eds.). 255–275.
Frimmel, H.E. & Nwaila, G.T. 2021. Geologic Evidence of Syngenetic Gold in the Witwatersrand Goldfields, South Africa. in Geology of the World’s Major Gold Deposits and Provinces Society of Economic Geologists. 645–668.
Frimmel, H., Groves, D., Kirk, J., Ruiz, J., Chesley, J. & Minter, W.E.L. 2005. The formation and preservation of the Witwatersrand goldfields, the largest gold province in the world. in Economic Geology 100th Anniversary Volume Vol. 100. 769–797.
García, C., Ballester, A., González, F. & Blázquez, M.L. 2005. Pyrite behaviour in a tailings pond. Hydrometallurgy. 76(1–2):25–36.
Goodall, W.R. 2008. Characterisation of mineralogy and gold deportment for complex tailings deposits using QEMSCAN®. Minerals Engineering. 21(6):518–523.
Goodall, W.R. & Butcher, A.R. 2012. The use of QEMSCAN in practical gold deportment studies. in Transactions of the Institutions of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy Vol. 121. 199–204.
Hammond, N.Q. & Moore, J.M. 2006. Archaean lode gold mineralisation in banded iron formation at the Kalahari Goldridge deposit, Kraaipan Greenstone Belt, South Africa. Mineralium Deposita. 41(5):483–503.
Harmony Gold. 2021. Mineral Resources and Minerals Reserves Report 2021. [Online], Available: http://www.har.co.za/21/download/HAR-RR21.pdf [2022, May 19].
Hayward, C.L., Reimold, W.U., Gibson, R.L. & Robb, L.J. 2005. Gold mineralization within the Witwatersrand Basin, South Africa: Evidence for a modified placer origin, and the role of the Vredefort impact event. Geological Society Special Publication. 248:31–58.
Heinrich, C.A. 2015. Witwatersrand gold deposits formed by volcanic rain, anoxic rivers and Archaean life. Nature Geoscience. 8(3):206–209.
Janse van Rensburg, S. 2016. Guidelines for Retreatment of SA gold tailings: MINTEK’s learnings. in Proceedings of the 23rd WasteCon Conference Johannesburg. 367–376. [Online], Available: https://iwmsa.co.za/sites/default/files/downloads/56. Janse van Rensburg%2C S.pdf.
Kirk, J., Ruiz, J., Chesley, J., Titley, S. & Walshe, J. 2001. A detrital model for the origin of gold and sulfides in the Witwatersrand basin based on Re-Os isotopes. Geochimica et Cosmochimica Acta. 65(13):2149–2159.
Koglin, N., Zeh, A., Frimmel, H.E. & Gerdes, A. 2010. New constraints on the auriferous Witwatersrand sediment provenance from combined detrital zircon U-Pb and Lu-Hf isotope data for the Eldorado Reef (Central Rand Group, South Africa). Precambrian Research. 183(4):817–824.
Large, R.R. & Maslennikov, V. V. 2020. Invisible gold paragenesis and geochemistry in pyrite from orogenic and sediment-hosted gold deposits. Minerals. 10(4).
Longerich, H.P., Jackson, S.E. & Gunther, D. 1997. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry. 12(3):391.
Lorenzen, L. & Tumilty, J.A. 1992. Diagnostic leaching as an analytical tool for evaluating the effect of reagents on the performance of a gold plant. Minerals Engineering. 5(3–5):503–512.
Merkulova, M., Mathon, O., Glatzel, P., Rovezzi, M., Batanova, V., Marion, P., Boiron, M.C. & Manceau, A. 2019. Revealing the Chemical Form of “invisible” Gold in Natural Arsenian Pyrite and Arsenopyrite with High Energy-Resolution X-ray Absorption Spectroscopy. ACS Earth and Space Chemistry. 3(9):1905–1914.
Minter, W.E.L., Goedhart, M., Knight, J. & Frimmel, H.E. 1993. Morphology of Witwatersrand gold grains from the Basal Reef: Evidence for their detrital origin. Economic Geology. 88(2):237–248.
Morishita, Y., Hammond, N.Q., Momii, K., Konagaya, R., Sano, Y., Takahata, N. & Ueno, H. 2019. Invisible gold in pyrite from epithermal, banded-iron-formation-hosted, and sedimentary gold deposits: Evidence of hydrothermal influence. Minerals. 9(7):447.
Naicker, K., Cukrowska, E. & McCarthy, T.S. 2003. Acid mine drainage arising from gold mining activity in Johannesburg, South Africa and environs. Environmental Pollution. 122(1):29–40.
Norris, A. & Danyushevsky, L. 2018. Towards Estimating the Complete Uncertainty Budget of Quantified Results Measured by LA-ICP-MS. Goldschmidt: Boston, MA, USA.
Palenik, C.S., Utsunomiya, S., Reich, M., Kesler, S.E., Wang, L. & Ewing, R.C. 2004. “Invisible” gold revealed: Direct imaging of gold nanoparticles in a Carlin-type deposit. American Mineralogist. 89(10):1359–1366.
Phillips, G.N. & Lawl, J.D.M. 2000. Witwatersrand Gold Fields: Geology, Genesis, and Exploration. SEG Review. 13(March):439–500.
Reich, M., Kesler, S.E., Utsunomiya, S., Palenik, C.S., Chryssoulis, S.L. & Ewing, R.C. 2005. Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta. 69(11):2781–2796.
Rösner, T. & Van Schalkwyk, A. 2000. The environmental impact of gold mine tailings footprints in the Johannesburg region, South Africa. Bulletin of Engineering Geology and the Environment. 59(2):137–148.
Sibanye-Stillwater Limited. 2021. Mineral Resources and Mineral Reserves Report. [Online], Available: https://reports.sibanyestillwater.com/2021/download/SSW-RR21.pdf [2022, May 19].
Smith, O.C. 1946. Identification and qualitative chemical analysis of minerals. New York: D. Van Nostrand Co.
Tutu, H., McCarthy, T.S. & Cukrowska, E. 2008. The chemical characteristics of acid mine drainage with particular reference to sources, distribution and remediation: The Witwatersrand Basin, South Africa as a case study. Applied Geochemistry. 23(12):3666–3684.
Wymer, D.. 2001. The impact of gold mining on radioactivity in water and food stuffs. in Proceedings of the Chamber of Mines of South Africa Conference on Environmentally Responsible Mining in Southern Africa Johannesburg. 19–30.
Zhou, J.Y. & Cabri, L.J. 2004. Gold process mineralogy: Objectives, techniques, and applications. Jom. 56(7):49–52.