1 Haensch, W. et al. Silicon CMOS devices beyond scaling. IBM Journal of Research and Development 50, 339-361 (2006).
2 Bae, W. Today’s computing challenges: opportunities for computer hardware design. PeerJ Computer Science 7 (2021).
3 Liu, C. et al. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545-557 (2020).
4 Leiserson, C. E. et al. There’s plenty of room at the Top: What will drive computer performance after Moore’s law? Science 368, eaam9744 (2020).
5 The International Roadmap For Devices And Systems, https://irds.ieee.org/editions/2020 (2020).
6 Cavin, R. K., Lugli, P. & Zhirnov, V. V. Science and Engineering Beyond Moore's Law. Proceedings of the IEEE 100, 1720-1749 (2012).
7 Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507-518 (2019).
8 Cao, Q. Carbon nanotube transistor technology for More-Moore scaling. Nano Research 14, 3051-3069 (2021).
9 Liu, L. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69-75 (2022).
10 Wu, Z. et al. Large-scale growth of few-layer two-dimensional black phosphorus. Nature Materials 20, 1203-1209 (2021).
11 Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211-217 (2021).
12 Sun, Y., Dong, T. G., Yu, L. W., Xu, J. & Chen, K. J. Planar Growth, Integration, and Applications of Semiconducting Nanowires. Advanced Materials 32 (2020).
13 Lin, Y. et al. Enhancement‐Mode Field‐Effect Transistors and High‐Speed Integrated Circuits Based on Aligned Carbon Nanotube Films. Advanced Functional Materials 32, 2104539 (2021).
14 Shi, H. et al. Radiofrequency transistors based on aligned carbon nanotube arrays. Nature Electronics 4, 405-415 (2021).
15 Cao, Q., Tersoff, J., Farmer, D. B., Zhu, Y. & Han, S.-J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 356, 1369-1372 (2017).
16 Liu, L. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 368, 850-856 (2020).
17 Shulaker, M. M. et al. Carbon nanotube computer. Nature 501, 526-530 (2013).
18 Franklin, A. D. Nanomaterials in transistors: From high-performance to thin-film applications. Science 349, aab2750-aab2750 (2015).
19 Franklin, A. D. The road to carbon nanotube transistors. Nature 498, 443-444 (2013).
20 Avouris, P., Chen, Z. & Perebeinos, V. Carbon-based electronics. Nature Nanotechnology 2, 605-615 (2007).
21 Qiu, C. et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355, 271-276 (2017).
22 Bachtold, A. Logic Circuits with Carbon Nanotube Transistors. Science 294, 1317-1320 (2001).
23 Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 424, 654-657 (2003).
24 Zhang, Z. et al. Self-Aligned Ballistic n-Type Single-Walled Carbon Nanotube Field-Effect Transistors with Adjustable Threshold Voltage. Nano Lett 8, 3696-3701 (2008).
25 Zhao, M. et al. DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors. Science 368, 878-881 (2020).
26 Geier, M. L. et al. Solution-processed carbon nanotube thin-film complementary static random access memory. Nature Nanotechnology 10, 944-948 (2015).
27 Shulaker, M. M. et al. High-Performance Carbon Nanotube Field-Effect Transistors. IEEE International Electron Devices Meeting (2014).
28 Brady, G. J. et al. Polyfluorene-Sorted, Carbon Nanotube Array Field-Effect Transistors with Increased Current Density and High On/Off Ratio. ACS Nano 8, 11614-11621 (2014).
29 Cao, Q. et al. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 8, 180-186 (2013).
30 Park, H. et al. High-density integration of carbon nanotubes via chemical self-assembly. Nat. Nanotechnol. 7, 787-791 (2012).
31 Datta, S. Ten nanometre CMOS logic technology. Nature Electronics 1, 500-501 (2018).
32 Cao, Q. et al. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 350, 68-72 (2015).
33 Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74-78 (2017).
34 Kanhaiya, P. S., Lau, C., Hills, G., Bishop, M. D. & Shulaker, M. M. Carbon Nanotube-Based CMOS SRAM: 1 kbit 6T SRAM Arrays and 10T SRAM Cells. IEEE Transactions on Electron Devices 66, 5375-5380 (2019).
35 Yang, Y., Ding, L., Han, J., Zhang, Z. & Peng, L.-M. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films. ACS Nano 11, 4124-4132 (2017).
36 Hills, G. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 572, 595-602 (2019).
37 Chen, B. et al. Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits. Nano Lett 16, 5120-5128 (2016).
38 Zhong, D. et al. Gigahertz integrated circuits based on carbon nanotube films. Nature Electronics 1, 40-45 (2018).
39 Han, S.-J. et al. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes. Nature Nanotechnology 12, 861-865 (2017).
40 Cao, Y. et al. Radio Frequency Transistors Using Aligned Semiconducting Carbon Nanotubes with Current-Gain Cutoff Frequency and Maximum Oscillation Frequency Simultaneously Greater than 70 GHz. ACS Nano 10, 6782-6790 (2016).
41 Liu, L. et al. Carbon Nanotube Complementary Gigahertz Integrated Circuits and Their Applications on Wireless Sensor Interface Systems. Acs Nano 13, 2526-2535 (2019).
42 Samavedam, S. B. et al. Future Logic Scaling: Towards Atomic Channels and Deconstructed Chips. International Electron Devices Meeting (IEDM) (2020).
43 Zhu, M. G., Zhang, Z. & Peng, L. M. High‐Performance and Radiation‐Hard Carbon Nanotube Complementary Static Random‐Access Memory. Adv. Electron. Mater. 5, 1900313 (2019).
44 Ghani, T. et al. A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors. IEEE International Electron Devices Meeting 11.16. 11-11.16. 13 (2003).
45 Kim, W. et al. Electrical contacts to carbon nanotubes down to 1 nm in diameter. Applied Physics Letters 87, 173101 (2005).
46 Tulevski, G. S. et al. Toward high-performance digital logic technology with carbon nanotubes. ACS nano 8, 8730-8745 (2014).
47 Xu, L., Gao, N., Zhang, Z. & Peng, L.-M. Lowering interface state density in carbon nanotube thin film transistors through using stacked Y2O3/HfO2 gate dielectric. Appl Phys Lett 113, 083105 (2018).
48 Bohr, M. et al. A high performance 0.35 μm logic technology for 3.3 V and 2.5 V operation. IEEE International Electron Devices Meeting. 273-276 (1994).
49 Brand, A. et al. Intel’s 0.25 micron, 2.0 volts logic process technology. Intel Technology Journal Q 3, 1998 (1998).
50 Yang, S. et al. A high performance 180 nm generation logic technology. International Electron Devices Meeting, 197-200 (1998).
51 Tyagi, S. et al. A 130 nm generation logic technology featuring 70 nm transistors, dual Vt transistors and 6 layers of Cu interconnects. International Electron Devices Meeting. 567-570 (2000).
52 Mistry, K. et al. A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging. IEEE International Electron Devices Meeting. 247-250 (2007).
53 Natarajan, S. et al. A 32nm logic technology featuring 2 nd-generation high-k+ metal-gate transistors, enhanced channel strain and 0.171 μm2 SRAM cell size in a 291Mb array. IEEE International Electron Devices Meeting. 1-3 (2008).
54 Auth, C. et al. A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. symposium on VLSI technology (VLSIT). 131-132 (2012).
55 Natarajan, S. et al. A 14nm logic technology featuring 2 nd-generation finfet, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2 sram cell size. IEEE International Electron Devices Meeting. 3.7. 1-3.7. 3 (2014).
56 Auth, C. et al. A 10nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects. IEEE International Electron Devices Meeting (IEDM). 29.21. 21-29.21. 24 (2017).
57 Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nature Materials 14, 1195-1205 (2015).
58 Franklin, A. D. & Chen, Z. Length scaling of carbon nanotube transistors. Nat Nanotechnol 5, 858-862 (2010).
59 Liu, L. et al. Scaling down contact length in complementary carbon nanotube field-effect transistors. Nanoscale 9, 9615-9621 (2017).
60 Nandakumar, M. et al. Shallow trench isolation for advanced ULSI CMOS technologies. International Electron Devices Meeting (1998).
61 Thompson, S. E. et al. A 90-nm logic technology featuring strained-silicon. IEEE Transactions on Electron Devices 51, 1790-1797 (2004).
62 Xu, L., Qiu, C., Zhao, C., Zhang, Z. & Peng, L.-M. Insight Into Ballisticity of Room-Temperature Carrier Transport in Carbon Nanotube Field-Effect Transistors. IEEE Transactions on Electron Devices 66, 3535-3540 (2019).
63 Del Alamo, J. A. Nanometre-scale electronics with III–V compound semiconductors. Nature 479, 317-323 (2011).
64 Martel, R. et al. Ambipolar Electrical Transport in Semiconducting Single-Wall Carbon Nanotubes. Physical Review Letters 87 (2001).
65 Xu, L., Qiu, C., Peng, L.-M. & Zhang, Z. Suppression of leakage current in carbon nanotube field-effect transistors. Nano Research 14, 976-981 (2021).
66 Zhao, C. et al. Strengthened Complementary Metal–Oxide–Semiconductor Logic for Small-Band-Gap Semiconductor-Based High-Performance and Low-Power Application. ACS Nano 14, 15267-15275 (2020).
67 Srimani, T. et al. Asymmetric gating for reducing leakage current in carbon nanotube field-effect transistors. Appl Phys Lett 115, 063107 (2019).
68 Liu, L., Zhao, C., Ding, L., Peng, L. & Zhang, Z. Drain-engineered carbon-nanotube-film field-effect transistors with high performance and ultra-low current leakage. Nano Research 13, 1875–1881 (2019).
69 Qiu, C. G. et al. Carbon Nanotube Feedback-Gate Field-Effect Transistor: Suppressing Current Leakage and Increasing On/Off Ratio. ACS Nano 9, 969-977 (2015).