1 Edwards, J. K. H., Graham J Palladium and gold-palladium catalysts for the direct synthesis of hydrogen peroxide. Angew. Chem. Int. Ed. 47, 9192-9198 (2008).
2 Perry, S. C. et al. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3, 442-458 (2019).
3 Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226-231 (2019).
4 Edwards, J. K. et al. Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323, 1037-1041 (2009).
5 Samanta, C. Direct synthesis of hydrogen peroxide from hydrogen and oxygen: An overview of recent developments in the process. Appl. Catal. A-Gen. 350, 133-149 (2008).
6 Yang, S. et al. Toward the decentralized electrochemical production of H2O2: a focus on the catalysis. ACS Catal. 8, 4064-4081 (2018).
7 Yi, Y., Wang, L., Li, G. & Guo, H. A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: noble-metal catalytic method, fuel-cell method and plasma method. Catal. Sci. Technol. 6, 1593-1610 (2016).
8 Campos-Martin, J. M., Blanco-Brieva, Gema Fierro, Jose LG. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 45, 6962-6984 (2006).
9 Wang, Y., Waterhouse, G. I., Shang, L. & Zhang, T. Electrocatalytic Oxygen Reduction to Hydrogen Peroxide: From Homogenous to Heterogenous Electrocatalysis. Adv. Energy. Mater., 2003323 (2020).
10 Rankin, R. B. & Greeley, J. Trends in selective hydrogen peroxide production on transition metal surfaces from first principles. ACS Catal. 2, 2664-2672 (2012).
11 Lu, Z. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1, 156 (2018).
12 Jung, E., Shin, H., Hooch Antink, W., Sung, Y.-E. & Hyeon, T. Recent advances in electrochemical oxygen reduction to H2O2: catalyst and cell design. ACS Energy Lett. 5, 1881-1892 (2020).
13 Sun, K. et al. Electrochemical oxygen reduction to hydrogen peroxide via a two-electron transfer pathway on carbon-based single-atom catalysts. Adv. Mater. Interfaces, 2001360 (2020).
14 Zhang, B., Xu, W., Lu, Z. & Sun, J. Recent progress on carbonaceous material engineering for electrochemical hydrogen peroxide generation. Transactions of Tianjin University 26, 188-196 (2020).
15 Babuponnusami, A. & Muthukumar, K. Advanced oxidation of phenol: a comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes. Chem. Eng. J. 183, 1-9 (2012).
16 Brillas, E., Sirés, I. & Oturan, M. A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 109, 6570-6631 (2009).
17 Nidheesh, P. & Gandhimathi, R. Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination 299, 1-15 (2012).
18 Salimi, M. et al. Contaminants of emerging concern: a review of new approach in AOP technologies. Environ. Monit. Assess. 189, 1-22 (2017).
19 Oturan, M. A. & Aaron, J.-J. Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit. Rev. Environ. Sci. Technol. 44, 2577-2641 (2014).
20 Miklos, D. B. et al. Evaluation of advanced oxidation processes for water and wastewater treatment–A critical review. Water Res. 139, 118-131 (2018).
21 Yamanaka, I. & Murayama, T. Neutral H2O2 synthesis by electrolysis of water and O2. Angew. Chem. Int. Ed. 47, 1900-1902 (2008).
22 Xia, B. Y. et al. A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy. 1, 1-8 (2016).
23 Jiang, Y. et al. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy. Mater. 8, 1801909 (2018).
24 Xia, C., Kim, J. Y. T. & Wang, H. Recommended practice to report selectivity in electrochemical synthesis of H2O2. Nat. Catal. 3, 605-607 (2020).
25 Li, F., Shao, Q., Hu, M., Chen, Y. & Huang, X. Hollow Pd-Sn nanocrystals for efficient direct H2O2 synthesis: the critical role of Sn on structure evolution and catalytic performance. ACS Catal. 8, 3418-3423 (2018).
26 Jirkovský, J. S. et al. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 133, 19432-19441 (2011).
27 Edwards, J. K. et al. Direct synthesis of H2O2 from H2 and O2 over gold, palladium, and gold-palladium catalysts supported on acid-pretreated TiO2. Angew. Chem. Int. Ed. 48, 8512-8515 (2009).
28 Freakley, S. J. et al. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351, 965-968 (2016).
29 Perazzolo, V. et al. Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide. Carbon 95, 949-963 (2015).
30 Liu, Y., Quan, X., Fan, X., Wang, H. & Chen, S. High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem. Int. Ed. 54, 6837-6841 (2015).
31 Chen, S. et al. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 140, 7851-7859 (2018).
32 Wood, K. N., O'Hayre, R. & Pylypenko, S. Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 7, 1212-1249 (2014).
33 Jiang, K. et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 10, 1-11 (2019).
34 Smith, P. T., Kim, Y., Benke, B. P., Kim, K. & Chang, C. J. Supramolecular Tuning Enables Selective Oxygen Reduction Catalyzed by Cobalt Porphyrins for Direct Electrosynthesis of Hydrogen Peroxide. Angew. Chem. Int. Ed. (2020).
35 Jung, E. et al. Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 19, 436-442 (2020).
36 Wang, Y. et al. High-Efficiency Oxygen Reduction to Hydrogen Peroxide Catalyzed by Nickel Single-Atom Catalysts with Tetradentate N2O2 Coordination in a Three-Phase Flow Cell. Angew. Chem. Int. Ed. 59, 13057-13062 (2020).
37 Xu, W., Lu, Z., Sun, X., Jiang, L. & Duan, X. Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 51, 1590-1598 (2018).
38 Lu, Z. et al. Superaerophilic carbon-nanotube-array electrode for high-performance oxygen reduction reaction. Adv. Mater. 28, 7155-7161 (2016).
39 Zhang, Q. et al. Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion. Nat. Commun. 11, 1-11 (2020).
40 Feng, L. et al. Super-hydrophobic surfaces: from natural to artificial. Adv. Mater 14, 1857-1860 (2002).
41 Sun, T., Feng, L., Gao, X. & Jiang, L. Bioinspired surfaces with special wettability. Accounts. Chem. Res. 38, 644-652 (2005).
42 Ma, H. et al. Directional and Continuous Transport of Gas Bubbles on Superaerophilic Geometry-Gradient Surfaces in Aqueous Environments. Adv. Funct. Mater. 28, 1705091 (2018).
43 Xu, W. et al. An advanced zinc air battery with nanostructured superwetting electrodes. Energy Storage Mater. 17, 358-365 (2019).
44 Cai, Z. et al. Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes. Nano Res. 12, 345-349 (2019).
45 Jiang, K. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11, 893-903 (2018).
46 Liu, W. et al. A Durable Nickel Single-Atom Catalyst for Hydrogenation Reactions and Cellulose Valorization under Harsh Conditions. Angew. Chem. Int. Ed. 130, 7189-7193 (2018).
47 Zheng, T. et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 3, 265-278 (2019).
48 Yang, S., Zhang, T., Li, G., Yang, L. & Lee, J. Y. Facile synthesis of N/M/O (M= Fe, Co, Ni) doped carbons for oxygen evolution catalysis in acid solution. Energy Storage Mater. 6, 140-148 (2017).
49 Zhang, T. et al. Atomically Dispersed Nickel (I) on an Alloy-Encapsulated Nitrogen-Doped Carbon Nanotube Array for High‐Performance Electrochemical CO2 Reduction Reaction. Angew. Chem. Int. Ed. 132, 12153-12159 (2020).
50 Torres, C. R., Crastechini, E., Feitosa, F. A., Pucci, C. R. & Borges, A. B. Influence of pH on the effectiveness of hydrogen peroxide whitening. Oper. Den. 39, 261-268 (2014).
51 Iglesias, D. et al. N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. Chem 4, 106-123 (2018).
52 Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B. 108, 17886-17892 (2004).
53 Yang, Q. et al. Atomically dispersed Lewis acid sites boost 2-electron oxygen reduction activity of carbon-based catalysts. Nat. Commun. 11, 1-10 (2020).
54 Sirés, I., Brillas, E., Oturan, M. A., Rodrigo, M. A. & Panizza, M. Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ. Sci. Pollut. Res. 21, 8336-8367 (2014).
55 Yang, C., Xie, H., Wang, Z., Tan, Y. & Wang, N. Electro-Fenton Degradation of High Concentration Rhodamine B on Nickel Foam Cathode Catalyzed by Cucumber Bio-Templated Fe3O4@ PTFE. Int. J. Electrochem. Sci 16, 151058 (2021).
56 Rezaei, F. & Vione, D. Effect of pH on zero valent iron performance in heterogeneous fenton and fenton-like processes: A review. Molecules 23, 3127 (2018).
57 Zhang, Y. & Zhou, M. A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values. J. Hazard. Mater. 362, 436-450 (2019).
58 Wang, N., Zheng, T., Zhang, G. & Wang, P. A review on Fenton-like processes for organic wastewater treatment. J. Environ. Chem. Eng. 4, 762-787 (2016).
59 Liang, L. et al. Novel rolling-made gas-diffusion electrode loading trace transition metal for efficient heterogeneous electro-Fenton-like. J. Environ. Chem. Eng. 4, 4400-4408 (2016).
60 Yao, Y. et al. Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal. J. Hazard. Mater. 314, 129-139 (2016).