Agency. USEP (2005) Intergrated Risk Information System (IRIS). Environmental Protection Agency, United States
Ajey, Singh, N.B., Singh, Imtiyaz, Hussain, Himani, Singh, Vijaya, Biotechnology YJJo (2016) Green synthesis of nano zinc oxide and evaluation of its impact on germination and metabolic activity of Solanum lycopersicum. J. Biotech. 233:84-94
Balážová Ľ, Babula P, Baláž M, Bačkorová M, Bujňáková Z, Briančin J, Kurmanbayeva A, Sagi M (2018) Zinc oxide nanoparticles phytotoxicity on halophyte from genus Salicornia. Plant Physiol. Biochem. 130:30-42
Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, Rico CM, José-Yacamán M, Peralta-Videa JR, Gardea-Torresdey JL (2015) Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci. Total Environ. 515–516:60-69
Baskar V, Safia N, Sree Preethy K, Dhivya S, Thiruvengadam M, Sathishkumar R (2020) A comparative study of phytotoxic effects of metal oxide (CuO, ZnO and NiO) nanoparticles on in-vitro grown Abelmoschus esculentus. Plant Biosyst. 155:374-383.
Cheng Y, Wang C, Chai S, Shuai W, Sha L, Zhang H, Kang H, Fan X, Zeng J, Zhou Y, Wang Y (2018) Ammonium N influences the uptakes, translocations, subcellular distributions and chemical forms of Cd and Zn to mediate the Cd/Zn interactions in dwarf polish wheat (Triticum polonicum L.) seedlings. Chemosphere 193:1164-1171
Datta SP, Young SD (2005) Predicting metal uptake and risk to the human food chain from leaf vegetables grown on soils amended by long-term application of sewage sludge. Water, Air, Soil Pollut. 163:119-136
Dou CM, Fu XP, Chen XC, Shi JY, Chen YX (2009) Accumulation and detoxification of manganese in hyperaccumulator Phytolacca americana. Plant Biology 11:664-670
Ebbs SD, Bradfield SJ, Kumar P, White JC, Musante C, Ma XM (2016) Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environ. Sci.-Nano 3:114-126
Elhaj Baddar Z, Unrine JM (2018) Functionalized-ZnO-Nanoparticle Seed Treatments to Enhance Growth and Zn Content of Wheat (Triticum aestivum) Seedlings. J. Agric. Food Chem. 66:12166-12178
Fan Y, Li H, Xue Z, Zhang Q, Cheng F (2017) Accumulation characteristics and potential risk of heavy metals in soil-vegetable system under greenhouse cultivation condition in Northern China. Ecol. Eng. 102:367-373
Hu W, Huang B, Shi X, Chen W, Zhao Y, Jiao WJE, Safety E (2013) Accumulation and health risk of heavy metals in a plot-scale vegetable production system in a peri-urban vegetable farm near Nanjing, China. Ecotoxicol. Environ. Saf. 98:303-309
Hu W, Yong C, Huang B, Human SNJ, Journal ERAAI (2014) Health Risk Assessment of Heavy Metals in Soils and Vegetables from a Typical Greenhouse Vegetable Production System in China. Hum. Ecol. Risk Assess. 20:1264-1280
Jasmina, Kurepa, Tatjana, Paunesku, Stefan, Vogt, Hans, Arora, Bryan, Letters MJN (2010) Uptake and Distribution of Ultrasmall Anatase TiO2 Alizarin Red S Nanoconjugates in Arabidopsis thaliana. Nano Lett. 10:2296-2302.
Ji Y, Wu PJ, Zhang J, Zhang J, Zhou YF, Peng YW, Zhang SF, Cai GT, Gao GQ (2018) Heavy metal accumulation, risk assessment and integrated biomarker responses of local vegetables: A case study along the Le'an river. Chemosphere 199:361-371
Lam SK, Siu CL, Hillmer S, Jang S, An G, Robinson DG, Jiang L (2007) Rice SCAMP1 Clathrin-Coated, trans-Golgi–Located Tubular-Vesicular Structures as an Early Endosome in Tobacco BY-2 Cells. Plant Cell 19:296-319
Liu W, Zhou Q, Zhang Y, Wei S (2010) Lead accumulation in different Chinese cabbage cultivars and screening for pollution-safe cultivars. J. Environ. Manage. 91:781-8
Liu W, Zhou Q, Zhang Z, Hua T, Cai Z (2011) Evaluation of cadmium phytoremediation potential in Chinese cabbage cultivars. J. Agric. Food Chem. 59:8324-30
Liu W, Zeb A, Lian J, Wu J, Xiong H, Tang J, Zheng S (2020) Interactions of metal-based nanoparticles (MBNPs) and metal-oxide nanoparticles (MONPs) with crop plants: a critical review of research progress and prospects. Environ. Rev. 28:294-310.
López-Moreno ML, de la Rosa G, Hernández-Viezcas JÁ, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the Differential Biotransformation and Genotoxicity of ZnO and CeO2 Nanoparticles on Soybean (Glycine max) Plants. Environ. Sci. Technol. 44:7315-7320
Ma X, Gurung A, Deng Y (2013) Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Sci. Total Environ 443:844-849
Medina-Velo IA, Peralta-Videa JR, Gardea-Torresdey JL (2017) Assessing plant uptake and transport mechanisms of engineered nanomaterials from soil. MRS Bull. 42:379-383
Natasha, Shahid M, Farooq ABU, Rabbani F, Khalid S, Dumat C (2020) Risk assessment and biophysiochemical responses of spinach to foliar application of lead oxide nanoparticles: A multivariate analysis. Chemosphere 245:125605
Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res. 14:1109
Pramod M, Dhoke SK, Khanna AS (2011) Effect of Nano-ZnO Particle Suspension on Growth of Mung (Vigna radiata) and Gram (Cicer arietinum) Seedlings Using Plant Agar Method. J. Nanotech. 696535
Priester JH, Moritz SC, Espinosa K, Ge Y, Wang Y, Nisbet RM, Schimel JP, Susana Goggi A, Gardea-Torresdey JL, Holden PA (2017) Damage assessment for soybean cultivated in soil with either CeO2 or ZnO manufactured nanomaterials. Sci. Total Environ. 579:1756-1768
Qian H, Peng X, Han X, Ren J, Sun L, Fu ZJ (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci, 25:1947-1956
Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KA, Movsesyan HS (2018) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environ. Nanotech. Monitor. & Manage. 9:76-84
Rao S, Shekhawat GS (2014) Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea. J. Environ. Chem. Eng. 2:105-114
Reddy Pullagurala VL, Adisa IO, Rawat S, Kalagara S, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2018) ZnO nanoparticles increase photosynthetic pigments and decrease lipid peroxidation in soil grown cilantro (Coriandrum sativum). Plant Physiol. Biochem. 132:120-127
Rizwan M, Ali S, Zia ur Rehman M, Adrees M, Arshad M, Qayyum MF, Ali L, Hussain A, Chatha SAS, Imran M (2019) Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environ. Pollut. 248:358-367
Sharifan H, Ma X, Moore JM, Habib MR, Evans C (2019a) Zinc Oxide Nanoparticles Alleviated the Bioavailability of Cadmium and Lead and Changed the Uptake of Iron in Hydroponically Grown Lettuce (Lactuca sativa L. var. Longifolia). ACS Sustain. Chem. Eng. 7:16401-16409
Sharifan H, Wang X, Ma XM (2019b): Impact of nanoparticle surface charge and phosphate on the uptake of coexisting cerium oxide nanoparticles and cadmium by soybean (Glycine max. (L.) merr.). Int. J. Phytorem. 22:305-312
Sharifan H, Moore J, Ma X (2020): Zinc oxide (ZnO) nanoparticles elevated iron and copper contents and mitigated the bioavailability of lead and cadmium in different leafy greens. Ecotoxicol. Environ. Saf. 191:110177
Singh A, Singh NB, Afzal S, Singh T, Hussain I (2018) Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. J. Mater. Sci. 53:85-201
Song U, Kim J (2020) Zinc oxide nanoparticles: a potential micronutrient fertilizer for horticultural crops with little toxicity. Hortic. Environ. Biote. 61:625-631
Sun H, Du W, Peng Q, Lv Z, Mao H, Kopittke PM (2020): Development of ZnO Nanoparticles as an Efficient Zn Fertilizer: Using Synchrotron-Based Techniques and Laser Ablation to Examine Elemental Distribution in Wheat Grain. J. Agric. Food Chem. 68:5068-5075
Tripathi DK, Shweta, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2017) An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiol. Bioch. 110:2-12
Večeřová K, Večeřa Z, Dočekal B, Oravec M, Pompeiano A, Tříska J, Urban O (2016) Changes of primary and secondary metabolites in barley plants exposed to CdO nanoparticles. Environ. Pollut. 218:207-218
Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Sahi SVJPPB (2017) Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: A physiochemical analysis. Plant Physiol. Bioch. 110:59-69
Wang F, Liu X, Shi Z, Tong R, Adams CA, Shi X (2016) Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants – A soil microcosm experiment. Chemosphere 147:88-97
Wang P, Menzies NW, Lombi E, McKenna BA, Johannessen B, Glover CJ, Kappen P, Kopittke PM (2013) Fate of ZnO Nanoparticles in Soils and Cowpea (Vigna unguiculata). Environ. Sci. Technol. 47:13822-13830
Wang Y, Chai L, Yang Z, Mubarak H, Xiao R, Tang C (2017) Subcellular distribution and chemical forms of antimony in Ficus tikoua. Int. J. Phytoremediat.19:97-103
Watson JL, Fang T, Dimkpa CO, Britt DW, McLean JE, Jacobson A, Anderson AJ (2015) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28:101-12
Xiang L, Zhao H-M, Li Y-W, Huang X-P, Wu X-L, Zhai T, Yuan Y, Cai Q-Y, Mo C-H (2015) Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ. Sci. Pollut. Res. 22:10452-10462
Xin J, Zhao X, Tan Q, Sun X, Hu C (2017) Comparison of cadmium absorption, translocation, subcellular distribution and chemical forms between two radish cultivars (Raphanus sativus L.). Ecotoxicol. Environ. Saf. 145:258-265
Xiong T, Dumat C, Dappe V, Vezin H, Schreck E, Shahid M, Pierart A, Sobanska S (2017) Copper Oxide Nanoparticle Foliar Uptake, Phytotoxicity, and Consequences for Sustainable Urban Agriculture. Environ. Sci. Technol. 51:5242-5251
Xu J, Luo X, Wang Y, Feng Y (2018a) Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community. Environ. Sci. Pollut. Res. 25:6026-6035
Xu L, Lu A, Wang J, Ma Z, Pan L, Feng X, Luan YJE, Safety E (2015) Accumulation status, sources and phytoavailability of metals in greenhouse vegetable production systems in Beijing, China. Ecotoxicol. Environ. Saf. 122:214-220
Xu S, Hu C, Tan Q, Qin S, Sun X (2018b) Subcellular distribution of molybdenum, ultrastructural and antioxidative responses in soybean seedlings under excess molybdenum stress. Plant Physiol. Biochem. 123:75-80
Youssef MS, Elamawi RM (2020) Evaluation of phytotoxicity, cytotoxicity, and genotoxicity of ZnO nanoparticles in Vicia faba. Environ. Sci. Pollut. Res. 27:18972-18984
Yusefi-Tanha E, Fallah S, Rostamnejadi A, Pokhrel LR (2020) Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Sci. Total Environ. 738:140240
Zafar H, Ali A, Ali JS, Haq IU, Zia M (2016) Effect of ZnO Nanoparticles on Brassica nigra Seedlings and Stem Explants: Growth Dynamics and Antioxidative Response. Front. Plant Sci. 7:535
Zafar H, Abbasi BH, Zia M (2019) Physiological and antioxidative response of Brassica nigra (L.) to ZnO nanoparticles grown in culture media and soil. Toxicol. Environ. Chem. 101:281-299
Zeb A, Liu W, Wu J, Lian J, Lian Y (2021) Knowledge domain and emerging trends in nanoparticles and plants interaction research: A scientometric analysis. NanoImpact 21:100278
Zhang D, Hua T, Xiao F, Chen C, Gersberg RM, Liu Y, Stuckey D, Ng WJ, Tan SK (2015a) Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus tabernaemontani. Chemosphere 120:211-219
Zhang H, Guo Q, Yang J, Shen J, Shao CJE, Safety E (2015b) Subcellular cadmium distribution and antioxidant enzymatic activities in the leaves of two castor (Ricinus communis L.) cultivars exhibit differences in Cd accumulation. Ecotoxicol. Environ. Saf. 120:184-192
Zhang RC, Zhang HB, Tu C, Hu XF, Li LZ, Luo YM, Christie P (2015c) Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environ. Sci. Pollut. Res. 22:11109-11117
Zhang Y, Yin C, Cao S, Cheng L, Wu G, Guo J (2018) Heavy metal accumulation and health risk assessment in soil-wheat system under different nitrogen levels. Sci. Total Environ. 622-623:1499-1508
Zhong T, Xue D, Zhao L, Zhang X (2018) Concentration of heavy metals in vegetables and potential health risk assessment in China. Environ. Geochem. Health 40:313-322
Zhou J, Wan H, He J, Lyu D, Li H (2017) Integration of Cadmium Accumulation, Subcellular Distribution, and Physiological Responses to Understand Cadmium Tolerance in Apple Rootstocks. Front. Plant Sci. 8:966
Zhou Q, Guo J-J, He C-T, Shen C, Huang Y-Y, Chen J-X, Guo J-h, Yuan J-G, Yang Z-Y (2016) Comparative Transcriptome Analysis between Low- and High-Cadmium-Accumulating Genotypes of Pakchoi (Brassica chinensis L.) in Response to Cadmium Stress. Environ. Sci. Technol. 50:6485-6494
Zoufan P, Baroonian M, Zargar B (2020): ZnO nanoparticles-induced oxidative stress in Chenopodium murale L, Zn uptake, and accumulation under hydroponic culture. Environ. Sci. Pollut. Res. 27, 11066-11078